Advertisement

Patient-Specific Dosimetry, Radiobiology, and the Previously-Treated Patient

  • George Sgouros
  • Robert F. Hobbs
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstact

 Dosimetry methodologies that account for individual patient anatomy and radionuclide distribution have been developed. The limitations and possible model-based extensions to patient-specific dosimetry in radiopharmaceutical therapy (RPT) are reviewed. Dosimetry is relevant to RPT to the extent that it can be used to improve treatment outcome. Doing so involves assessing the potential benefit or harm of RPT on a given patient. The objective of introducing radiobiology as part of patient-specific dosimetry is to translate organ and tumor absorbed doses (i.e., energy absorbed per unit mass of tissue) into measures of tumor control or toxicity. The potential benefits, applicability and limitations of radiobiological modeling in RPT are briefly reviewed. Normal organ and tumor absorbed dose must be recognized as one of several factors that lead to toxicity or response. Prior treatment history will, in some cases, dictate response and complicate efforts to evaluate response and toxicity based on dosimetry and radiobiological modeling.

Keywords

Dose Rate Normal Organ Biological Effective Dose Normal Tissue Complication Probability Equivalent Uniform Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akabani G, Cokgor I, Coleman RE, Gonzalez Trotter D, Wong TZ, Friedman HS, Garcia-Turner A, Herndon JE, DeLong D, McLendon RE, Zhao XG, Pegram CN, Provenzale JM, Bigner DD, Zalutsky MR (2000) Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 46(4):947–958PubMedCrossRefGoogle Scholar
  2. Amro H, Wilderman SJ, Dewaraja YK, Roberson PL (2010) Methodology to incorporate biologically effective dose and equivalent uniform dose in patient-specific 3-dimensional dosimetry for non-Hodgkin lymphoma patients targeted with 131I-tositumomab therapy. J Nucl Med 51(4):654–659PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baechler S, Hobbs RF, Prideaux AR, Wahl RL, Sgouros G (2008a) Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Med Phys 35(3):1123–1134PubMedCentralPubMedCrossRefGoogle Scholar
  4. Baechler S, Hobbs R, Jacene H, Prideaux A, Wahl R, Sgouros G (2008) Factors affecting hematotoxicity after 90Y-ibritumomab tiuxetan or 131I-tositumomab radioimmunotherapy. J Nucl Med Meeting Abstr 49(MeetingAbstracts_1):322Google Scholar
  5. Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997PubMedCrossRefGoogle Scholar
  6. Barendsen GW, Van Bree C, Franken NAP (2001) Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: implications for combined tumor treatments (review). Int J Oncol 19(2):247–256PubMedGoogle Scholar
  7. Barone R, Borson-Chazot FO, Valkerna R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005a) Patient-specific Dosimetry in predicting renal toxicity with Y-90-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46:99S–106SPubMedGoogle Scholar
  8. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005b) Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46(Suppl 1):99S–106SPubMedGoogle Scholar
  9. Behr TM, Memtsoudis S, Sharkey RM, Blumenthal RD, Dunn RM, Gratz S, Wieland E, Nebendahl K, Schmidberger H, Goldenberg DM, Becker W (1998) Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: influence of radiation dose and dose rate on toxicity and anti-tumor efficacy. Int J Cancer 77(5):787–795PubMedCrossRefGoogle Scholar
  10. Behr TM, Behe M, Sgouros G (2002) Correlation of red marrow radiation dosimetry with myelotoxicity: empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 17(4):445–464PubMedCrossRefGoogle Scholar
  11. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED (2010) Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3, Supplement 1):S3–S9Google Scholar
  12. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana C, Bartolomei M, Baio S, Sansovini M, Paganelli G (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35(10):1847–1856PubMedGoogle Scholar
  13. Bodey RK, Evans PM, Flux GD (2004) Application of the linear-quadratic model to combined modality radiotherapy. Int J Radiat Oncol Biol Phys 59(1):228–241PubMedCrossRefGoogle Scholar
  14. Bolch WE, Shah AP, Watchman CJ, Jokisch DW, Patton PW, Rajon DA, Zankl M, Petoussi-Henss N, Eckerman KF (2007) Skeletal absorbed fractions for electrons in the adult male: considerations of a revised 50-microm definition of the bone endosteum. Radiat Prot Dosimetry 127(1–4):169–173PubMedCrossRefGoogle Scholar
  15. Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med 50(3):477–484PubMedCrossRefGoogle Scholar
  16. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G (2003) MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 44(7):1113–1147PubMedGoogle Scholar
  17. Bowers DC, McNeil DE, Liu Y, Yasui Y, Stovall M, Gurney JG, Hudson MM, Donaldson SS, Packer RJ, Mitby PA, Kasper CE, Robison LL, Oeffinger KC (2005) Stroke as a late treatment effect of Hodgkin’s disease: a report from the childhood cancer survivor study. J Clin Oncol 23(27):6508–6515PubMedCrossRefGoogle Scholar
  18. Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK (1998) The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res 150(1):83–91PubMedCrossRefGoogle Scholar
  19. Brenner DJ, Hlatky LR, Hahnfeldt PJ, Hall EJ, Sachs RK (1995) A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 32(2):379–390PubMedCrossRefGoogle Scholar
  20. Brindle JM, Myers SL, Bolch WE (2006a) Correlations of total pelvic spongiosa volume with both anthropometric parameters and computed tomography-based skeletal size measurements. Cancer Biother Radiopharm 21(4):352–363PubMedCrossRefGoogle Scholar
  21. Brindle JM, Trindade AA, Shah AP, Jokisch DW, Patton PW, Pichardo JC, Bolch WE (2006b) Linear regression model for predicting patient-specific total skeletal spongiosa volume for use in molecular radiotherapy dosimetry. J Nucl Med 47(11):1875–1883PubMedGoogle Scholar
  22. Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135Google Scholar
  23. Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58(690):515–528PubMedCrossRefGoogle Scholar
  24. Dale R, Carabe-Fernandez A (2005) The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 20(1):47–51PubMedCrossRefGoogle Scholar
  25. DeNardo GL, Schlom J, Buchsbaum DJ, Meredith RF, O’Donoghue JA, Sgouros G, Humm JL, DeNardo SJ (2002) Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer 94(4 Suppl):1332–1348PubMedCrossRefGoogle Scholar
  26. Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, Koral KF, Kaminski MS, Avram AM (2010) 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med 51(7):1155–1162PubMedCentralPubMedCrossRefGoogle Scholar
  27. Douglas BG, Fowler JF (1976) The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66(2):401–426PubMedCrossRefGoogle Scholar
  28. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122PubMedCrossRefGoogle Scholar
  29. Flynn AA, Pedley RB, Green AJ, Boxer GM, Boden R, Dearling J, Bhatia J, Begent RH (2001a) Effectiveness of radiolabelled antibodies for radio-immunotherapy in a colorectal xenograft model: a comparative study using the linear–quadratic formulation. Int J Radiat Biol 77(4):507–517PubMedCrossRefGoogle Scholar
  30. Flynn AA, Pedley RB, Green AJ, Boxer GM, Boden R, Begent RH (2001b) Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images. Cancer Biother Radiopharm 16(5):391–400PubMedCrossRefGoogle Scholar
  31. Flynn AA, Pedley RB, Green AJ, Boxer GM, Boden R, Bhatia J, Morris R, Begent RH (2002) Antibody and radionuclide characteristics and the enhancement of the effectiveness of radioimmunotherapy by selective dose delivery to radiosensitive areas of tumour. Int J Radiat Biol 78(5):407–415PubMedCrossRefGoogle Scholar
  32. Flynn AA, Pedley RB, Green AJ, Dearling JL, El Emir E, Boxer GM, Boden R, Begent RH (2003) The nonuniformity of antibody distribution in the kidney and its influence on dosimetry. Radiat Res 159(2):182–189PubMedCrossRefGoogle Scholar
  33. Furhang EE, Chui CS, Sgouros G (1996) A Monte Carlo approach to patient-specific dosimetry. Med Phys 23(9):1523–1529PubMedCrossRefGoogle Scholar
  34. Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G (1997) Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy. Med Phys 24(7):1163–1172PubMedCrossRefGoogle Scholar
  35. Hall EJ (1994) Radiobiology for the radiologist. J.B. Lippincott Co., PhiladelphiaGoogle Scholar
  36. Hobbs RF, Sgouros G (2009) Calculation of the biological effective dose for piecewise defined dose-rate fits. Med Phys 36(3):904–907PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hobbs RF, Baechler S, Wahl RL, He B, Song H, Esaias CE, Frey EC, Jacene H, Sgouros G (2010) Arterial wall dosimetry for non-Hodgkin lymphoma patients treated with radioimmunotherapy. J Nucl Med 51(3):368–375PubMedCentralPubMedCrossRefGoogle Scholar
  38. Hobbs R, McNutt T, Baechler S, Prideaux A, Loeb DM, Shokek O, Sgouros G (2008) Combined internal radionuclide therapy (IRT) and external radiation therapy (XRT) treatment planning for 153Sm-EDTMP treatment of metastatic osteosarcoma. SNM, New OrleansGoogle Scholar
  39. Hobbs RF, McNutt T,Baechler S, He B, Essaias CE, Frey EC, Loeb DM, Wahl RL, Shokek O, Sgouros G (2011) A treatment planning method for sequentially combining radiopharmaceutical therapy and external radiation therapy. Int J Radiat Oncol Biol Phys (4):1256–1262Google Scholar
  40. Howell RW, Rao DV, Sastry KS (1989) Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys 16(1):66–74PubMedCrossRefGoogle Scholar
  41. Howell RW, Goddu SM, Rao DV (1994) Application of the linear-quadratic model to radioimmunotherapy: further support for the advantage of longer-lived radionuclides. J Nucl Med 35(11):1861–1869PubMedGoogle Scholar
  42. Humm JL, Cobb LM (1990) Nonuniformity of tumor dose in radioimmunotherapy. J Nucl Med 31(1):75–83PubMedGoogle Scholar
  43. ICRP (1988) ICRP publication 53: radiation dose to patients from radiopharmaceuticals, 53. Ann ICRP 18:1–4Google Scholar
  44. Jones B, Dale RG (1995) Cell loss factors and the linear-quadratic model. Radiother Oncol 37(2):136–139PubMedCrossRefGoogle Scholar
  45. Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Curr Top Radiat Res Q 8:85–158Google Scholar
  46. Kolbert KS, Sgouros G, Scott AM, Baldwin B, Zhang J, Kalaigian H, Macapinlac HA, Graham MC, Larson SM (1994) Dose-volume histogram representation of patient dose distribution in 3-dimensional internal dosimetry. J Nucl Med 35(5):P123–P124Google Scholar
  47. Koral KF, Dewaraja Y, Li J, Lin QA, Regan DD, Zasadny KR, Rommelfanger SG, Francis IR, Kaminski MS, Wahl RL (2003) Update on hybrid conjugate-view SPECT tumor dosimetry and response in I-131-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 44(3):457–464PubMedGoogle Scholar
  48. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21(1):137–146Google Scholar
  49. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, O’Dorisio TM, Valkema R, Bodei L, Chinol M, Maecke HR, Krenning EP (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46 Suppl 1:62S–66SGoogle Scholar
  50. Lea D, Catcheside D (1942) The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet 44(2):216–245CrossRefGoogle Scholar
  51. Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13(1):103–109PubMedCrossRefGoogle Scholar
  52. Mayer R, Dillehay LE, Shao Y, Zhang YG, Song S, Bartholomew RM, Mackenson DG, Williams JR (1995) Direct measurement of intratumor dose-rate distributions in experimental xenografts treated with 90Y-labeled radioimmunotherapy. Int J Radiat Oncol Biol Phys 32(1):147–157PubMedCrossRefGoogle Scholar
  53. Millar WT (1991) Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy. Br J Radiol 64(759):242–251PubMedCrossRefGoogle Scholar
  54. Muthuswamy MS, Roberson PL, Ten Haken RK, Buchsbaum DJ (1996) A quantitative study of radionuclide characteristics for radioimmunotherapy from 3D reconstructions using serial autoradiography. Int J Radiat Oncol Biol Phys 35(1):165–172PubMedCrossRefGoogle Scholar
  55. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110PubMedCrossRefGoogle Scholar
  56. O’Donoghue JA (1991) Optimal scheduling of biologically targeted radiotherapy and total body irradiation with bone marrow rescue for the treatment of systemic malignant disease. Int J Radiat Oncol Biol Phys 21(6):1587–1594PubMedCrossRefGoogle Scholar
  57. O’Donoghue JA (1997) The response of tumours with Gompertzian growth characteristics to fractionated radiotherapy. Int J Radiat Biol 72(3):325–339PubMedCrossRefGoogle Scholar
  58. O’Donoghue JA (1999) Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 40(8):1337–1341PubMedGoogle Scholar
  59. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36(10):1902–1909PubMedGoogle Scholar
  60. O’Donoghue JA, Sgouros G, Divgi CR, Humm JL (2000) Single-dose versus fractionated radioimmunotherapy: model comparisons for uniform tumor dosimetry. J Nucl Med 41(3):538–547PubMedGoogle Scholar
  61. O’Donoghue JA, Baidoo N, Deland D, Welt S, Divgi CR, Sgouros G (2002) Hematologic toxicity in radioimmunotherapy: dose-response relationships for I-131 labeled antibody therapy. Cancer Biother Radiopharm 17(4):435–443PubMedCrossRefGoogle Scholar
  62. Pichardo JC, Trindade AA, Brindle JM, Bolch WE (2007) Method for estimating skeletal spongiosa volume and active marrow mass in the adult male and adult female. J Nucl Med 48(11):1880–1888PubMedCrossRefGoogle Scholar
  63. Prideaux AR, Song H, Hobbs RF, He B, Frey EC, Ladenson PW, Wahl RL, Sgouros G (2007) Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med 48(6):1008–1016PubMedCentralPubMedCrossRefGoogle Scholar
  64. Rao DV, Howell RW (1993) Time-dose-fractionation in radioimmunotherapy: implications for selecting radionuclides. J Nucl Med 34(10):1801–1810PubMedGoogle Scholar
  65. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Macke HR (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27(3):273–282PubMedCrossRefGoogle Scholar
  66. Ribom D, Engler H, Blomquist E, Smits A (2002) Potential significance of C-11-methionine PET as a marker for the radiosensitivity of low-grade gliomas. Eur J Nucl Med Mol Imaging 29(5):632–640PubMedGoogle Scholar
  67. Roberson PL, Heidorn DB, Kessler ML, Ten Haken RK, Buchsbaum DJ (1994) Three-dimensional reconstruction of monoclonal antibody uptake in tumor and calculation of beta dose-rate nonuniformity. Cancer 73(3 Suppl):912–918PubMedCrossRefGoogle Scholar
  68. Sachs RK, Hahnfeld P, Brenner DJ (1997) The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol 72(4):351–374PubMedCrossRefGoogle Scholar
  69. Sgouros G (1993) Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 34(4):689–694PubMedGoogle Scholar
  70. Sgouros G, Kolbert KS, Zaidi H (2002) The three-dimensional internal dosimetry software package, 3D-ID. In: Therapeutic applications of Monte Carlo calculations in nuclear medicine. Institute of Physics, PhiladelphiaGoogle Scholar
  71. Sgouros G, Squeri S, Ballangrud AM, Kolbert KS, Teitcher JB, Panageas KS, Finn RD, Divgi CR, Larson SM, Zelenetz AD (2003) Patient-specific, 3-dimensional dosimetry in non-Hodgkin’s lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumor dose-response. J Nucl Med 44(2):260–268PubMedGoogle Scholar
  72. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8):1366–1372PubMedGoogle Scholar
  73. Sgouros G, Stabin M, Erdi Y, Akabani G, Kwok C, Brill AB, Wessels B (2000) Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys 27(9):2150–2164PubMedCrossRefGoogle Scholar
  74. Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R (2008) Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med 38(5):321–334PubMedCentralPubMedCrossRefGoogle Scholar
  75. Shen S, Duan J, Meredith RF, Buchsbaum DJ, Brezovich IA, Pareek PN, Bonner JA (2002) Model prediction of treatment planning for dose-fractionated radioimmunotherapy. Cancer 94(4 Suppl):1264–1269PubMedCrossRefGoogle Scholar
  76. Siegel JA, Yeldell D, Goldenberg DM, Stabin MG, Sparks RB, Sharkey RM, Brenner A, Blumenthal RD (2003) Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 44(1):67–76PubMedGoogle Scholar
  77. Travis EL, Tucker SL (1987) Isoeffect models and fractionated radiation therapy. Int J Radiat Oncol Biol Phys 13(2):283–287PubMedCrossRefGoogle Scholar
  78. Valentin J (1998) Radiation dose to patients from radiopharmaceuticals (Addendum 2 to ICRP publication 53) ICRP publication 80 approved by the Commission in September 1997. Ann ICRP 28(3):1–126CrossRefGoogle Scholar
  79. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, Peterson LM, Vallieres E, Wood DE (2002) In vivo validation of 3 ‘ deoxy-3 ‘-[F-18]fluorothymidine ([F-18]FLT) as a proliferation imaging tracer in humans: Correlation of [F-18]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8(11):3315–3323PubMedGoogle Scholar
  80. von der Weid NX (2008) Adult life after surviving lymphoma in childhood. Support Care Cancer 16(4):339–345PubMedCrossRefGoogle Scholar
  81. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesis M, Meredith RF, Green AJ, Bouchet LG, Brill AB, Bolch WE, Sgouros G, Thomas SR (2008) MIRD Pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response-implications for radionuclide therapy. J Nucl Med 49(11):1884–1899PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological ScienceSchool of Medicine, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations