Locoregional Radionuclide Therapy of Primary and Metastatic Cancers

  • Franklin C. Wong
Part of the Medical Radiology book series (MEDRAD)


Locoregional radionuclide cancer therapy (LRCT) has been applied to treat human cancers with increasing frequency because of better understanding of loculation and biodistribution of radiopharmaceuticals and translation of radiobiology from external beam radiotherapy. It is aided by radiation dosimetry derived from simulation of anthropomorphic models and imaging of radiopharmaceuticals. Theoretical advantages of LRCT include higher delivery efficiency, larger therapeutic windows, less radioactivities required, lower systemic toxicities, and simpler radiation dosimetry models. Other potential advantages include suppression of locoregional immunologic resistance so that immune recognition and amplification may be recruited for current therapy (analogous to the rare Ascopal effect) and prevention of recurrence. Since the main requirement is radiopharmaceutical proximity to the tumor for geographic targeting, requirement for chemical specificity is less stringent as long as the radionuclide is retained by the tumor for ablation by radioactive emissions. In practice, many commercially available radiopharmaceuticals may be contemplated to overcome some of the regulatory hurdles for productions and distribution. The disadvantages mostly stem from shorter range of emissions to eradicate larger tumors and inability to treat distant metastases which are nevertheless treated by other cancer therapy modalities such as surgery, external beam radiation, and chemotherapy. This chapter reviews theoretical aspects of LRCT along with examples of current practice of LRCT in different human tissues and organs, including interstitial, intracavitary, intrathecal, interstitial, pericaradial, peritoneal and peripleural spaces and tumors. The main goal is to shine light on what is possible and what is in practice in the real world and what can be done to bring these realms together. 



Pleural Fluid Cerebral Spinal Fluid Malignant Pleural Effusion Radionuclide Therapy Malignant Ascites 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez RD et al (1997) Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol 65(1):94–101PubMedCrossRefGoogle Scholar
  2. Alvarez RD et al (2002) A Phase I study of combined modality (90)Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 8(9):2806–2811PubMedGoogle Scholar
  3. Asakura H (1964) Intratumoral injection therapy with Yttrium-90 chloride colloid. Nippon Igaku Hoshasen Gakkai Zasshi 23:1493–1509PubMedGoogle Scholar
  4. Bdeir K et al (2010) Neutrophil alpha-defensins cause lung injury by disrupting the capillary-epithelial barrier. Am J Respir Crit Care Med 181(9):935–946PubMedCentralPubMedGoogle Scholar
  5. Benjamin JC et al (1989) Cerebral distribution of immunoconjugate after treatment for neoplastic meningitis using an intrathecal radiolabeled monoclonal antibody. Neurosurgery 25(2):253–258PubMedCrossRefGoogle Scholar
  6. Bigner DD et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab’)2–a preliminary report. J Neurooncol 24(1):109–122PubMedCrossRefGoogle Scholar
  7. Blau N et al (1977) Massive hemopericardium in a patient with postmyocardial infarction syndrome. Chest 71(4):549–552PubMedCrossRefGoogle Scholar
  8. Boiardi A et al (2005) Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 72(2):125–131PubMedCrossRefGoogle Scholar
  9. Bond WH, Richards D, Turner E (1965) Experiences with Radioactive Gold in the Treatment of Craniopharyngioma. J Neurol Neurosurg Psychiatry 28:30–38PubMedCentralPubMedCrossRefGoogle Scholar
  10. Botsford TW (1964) Experiences with radioactive colloidal gold in the treatment of pleural effusion caused by metastatic cancer of the breast. N Engl J Med 270:552–555PubMedCrossRefGoogle Scholar
  11. Brunhober J et al. (1981) Intrathecal radiogold application for meningosis “prophylaxis” in children with leukemias and non-Hodgkin lymphomas. II. Results and problems from viewpoint of nuclear medicine. Radiobiol Radiother (Berl) 22(5):570–578Google Scholar
  12. Chan TA et al (2005) Treatment of recurrent glioblastoma multiforme with GliaSite brachytherapy. Int J Radiat Oncol Biol Phys 62(4):1133–1139PubMedCrossRefGoogle Scholar
  13. Colby MY Jr (1954) Intracavitary radioactive colloidal gold in the treatment of malignant pleural effusion. Med Clin North Am 1133–1138. New YorkGoogle Scholar
  14. Covington EE, Hilaris BS (1973) P32 scans for intracavitary distribution studies. Am J Roentgenol Radium Ther Nucl Med 118(4):895–899PubMedCrossRefGoogle Scholar
  15. Croll MN, Brady LW (1979) Intracavitary uses of colloids. Semin Nucl Med 9(2):108–113PubMedCrossRefGoogle Scholar
  16. Doge H, Hliscs R (1984) Intrathecal therapy with 198Au-colloid for meningosis prophylaxis. Eur J Nucl Med 9(3):125–128PubMedCrossRefGoogle Scholar
  17. Dybicki J, Balchum OJ, Meneely GR (1959) Treatment of pleural and peritoneal effusion with intracavitary colloidal radiogold (Au 198). Arch Intern Med 104:802–815PubMedCrossRefGoogle Scholar
  18. Fleay RF (1971) Dosimetry in the use of colloidal isotopes. Australas Radiol 15(4):388–390PubMedCrossRefGoogle Scholar
  19. Flower MA, McCready VR (1997) Radionuclide therapy dose calculations: what accuracy can be achieved? Eur J Nucl Med 24(12):1462–1464PubMedCrossRefGoogle Scholar
  20. Garg AD et al (2010) Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 15(9):1050–1071PubMedCrossRefGoogle Scholar
  21. Gifford KA et al (2008) Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source. Med Phys 35(6):2279–2285PubMedCrossRefGoogle Scholar
  22. Groves RW et al (1995) Tumour necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. Br J Dermatol 132(3):345–352PubMedCrossRefGoogle Scholar
  23. Hasegawa T et al (2004) Management of cystic craniopharyngiomas with phosphorus-32 intracavitary irradiation. Neurosurgery 54(4):813–820 Discussion 820–822PubMedCrossRefGoogle Scholar
  24. Heute D et al (2010) Response of recurrent high-grade glioma to treatment with (90)Y-DOTATOC. J Nucl Med 51(3):397–400PubMedCrossRefGoogle Scholar
  25. Hopkins K et al (1998) Direct injection of 90Y MoAbs into glioma tumor resection cavities leads to limited diffusion of the radioimmunoconjugates into normal brain parenchyma: a model to estimate absorbed radiation dose. Int J Radiat Oncol Biol Phys 40(4):835–844PubMedCrossRefGoogle Scholar
  26. Julow J et al (2007) Stereotactic intracavitary irradiation of cystic craniopharyngiomas with yttrium-90 isotope. Prog Neurol Surg 20:289–296PubMedCrossRefGoogle Scholar
  27. Kalofonos HP et al (1994) Targeting of tumours with murine and reshaped human monoclonal antibodies against placental alkaline phosphatase: immunolocalisation, pharmacokinetics and immune response. Eur J Cancer 30A(12):1842–1850PubMedCrossRefGoogle Scholar
  28. Kemshead JT, Hopkins KI, Chandler CL (1996) Treatment of diffuse leptomeningeal malignancy by intrathecal injection of 131I radioimmunoconjugates. Recent Results Cancer Res 141:145–158PubMedCrossRefGoogle Scholar
  29. King ER et al (1952) The use of radioactive colloidal gold (Au198) in pleural effusions and ascites associated with malignancy. Am J Roentgenol Radium Ther Nucl Med 68(3):413–420PubMedGoogle Scholar
  30. Kobayashi T, Kageyama N, Ohara K (1981) Internal irradiation for cystic craniopharyngioma. J Neurosurg 55(6):896–903PubMedCrossRefGoogle Scholar
  31. Korbelik M (2010) Photodynamic therapy-generated cancer vaccines. Methods Mol Biol 635:147–153PubMedCrossRefGoogle Scholar
  32. Kosmas C, Kalofonos HP, Epenetos AA (1990) Radiolabelled monoclonal antibodies in tumour diagnosis and therapy. Dev Biol Stand 71:93–102PubMedGoogle Scholar
  33. Koukourakis GV et al (2009) Post-surgical irradiation causes cellular immune suppression in patients with breast cancer. Eur J Cancer Care (Engl) 18(3):306–312CrossRefGoogle Scholar
  34. Kramer K et al (2000) Targeted radioimmunotherapy for leptomeningeal cancer using (131)I-3F8. Med Pediatr Oncol 35(6):716–718PubMedCrossRefGoogle Scholar
  35. Kumar PP et al (1986) Retreatment of recurrent cystic craniopharyngioma with chromic phosphorus P 32. J Natl Med Assoc 78(6):542–543, 547–549Google Scholar
  36. Lanka VK (2006) Balloon brachytherapy for brain tumor-radiation safety experiences at the University of Medicine and Dentistry of New Jersey. Health Phys 91(5 Suppl):S83–S86PubMedCrossRefGoogle Scholar
  37. Lee JD et al (2002) Effective local control of malignant melanoma by intratumoural injection of a beta-emitting radionuclide. Eur J Nucl Med Mol Imaging 29(2):221–230PubMedGoogle Scholar
  38. Leff A, Hopewell PC, Costello J (1978) Pleural effusion from malignancy. Ann Intern Med 88(4):532–537PubMedGoogle Scholar
  39. Lehman J (1954) Radioactive gold in treatment of malignant effusion. Miss Valley Med J 76(6):238PubMedGoogle Scholar
  40. Leksell L, Backlund EO, Johansson L (1967) Treatment of craniopharyngiomas. Acta Chir Scand 133(5):345–350PubMedGoogle Scholar
  41. Ljunggren K et al (2004) Absorbed dose distribution in glioma tumors in rat brain after therapeutic intratumoral injection of 201Tl-chloride. Cancer Biother Radiopharm 19(5):562–569PubMedCrossRefGoogle Scholar
  42. Lin LL et al (2008) Long-term outcome in children treated for craniopharyngioma with and without radiotherapy. J Neurosurg Pediatr 1(2):126–130PubMedCrossRefGoogle Scholar
  43. Liu Z et al (1996) Stereotactic intratumour irradiation with nuclide for craniopharyngiomas. Chin Med J (Engl) 109(3):219–222Google Scholar
  44. Mahe MA et al (1999) A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 5(10 Suppl):3249s–3253sPubMedGoogle Scholar
  45. Malamitsi J et al (1988) Intracavitary use of two radiolabeled tumor-associated monoclonal antibodies. J Nucl Med 29(12):1910–1915PubMedGoogle Scholar
  46. Martini N et al (1977) Intrapericardial installation of radioactive chromic phosphate in malignant effusion. Am J Roentgenol (AJR) 128(4):639–641CrossRefGoogle Scholar
  47. McCready VR (1995) A different approach to the use of unsealed radionuclides for cancer therapy. Eur J Nucl Med 22(1):1–3PubMedCrossRefGoogle Scholar
  48. McCready VR, Cornes P (2001) The potential of intratumoural unsealed radioactive source therapy. Eur J Nucl Med 28(5):567–569PubMedCrossRefGoogle Scholar
  49. Meredith RF et al (1996) Intraperitoneal radioimmunotherapy of ovarian cancer with lutetium-177-CC49. J Nucl Med 37(9):1491–1496PubMedGoogle Scholar
  50. Meredith RF et al (2001) Intraperitoneal radioimmunochemotherapy of ovarian cancer: a phase I study. Cancer Biother Radiopharm 16(4):305–315PubMedCrossRefGoogle Scholar
  51. Meredith RF et al (2007) Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 13(18 Pt 2):5643s–5645sPubMedCrossRefGoogle Scholar
  52. Mohlen KH, Beller FK (1979) Use of radioactive gold in the treatment of pleural effusions caused by metastatic cancer. J Cancer Res Clin Oncol 94(1):81–85PubMedGoogle Scholar
  53. Moseley RP et al (1990) Intrathecal administration of 131I radiolabelled monoclonal antibody as a treatment for neoplastic meningitis. Br J Cancer 62(4):637–642PubMedCentralPubMedCrossRefGoogle Scholar
  54. Muriel FS et al (1976) Remission maintenance therapy for meningeal leukaemia: intrathecal methotrexate and dexamethasone versus intrathecal craniospinal irradiation with a radiocolloid. Br J Haematol 34(1):119–127PubMedCrossRefGoogle Scholar
  55. Oei AL et al (2007) Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer 120(12):2710–2714PubMedCrossRefGoogle Scholar
  56. Overton MC 3rd, Sheffel DD (1963) Recurrent cystic formation in craniopharyngioma treated with radioactive chromic phosphate. Case Report. J Neurosurg 20:707–710Google Scholar
  57. Paganelli G et al (2001) Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm 16(3):227–235PubMedCrossRefGoogle Scholar
  58. Paganelli G et al (2006) Radioimmunotherapy of brain tumor. Neurol Res 28(5):518–522PubMedCrossRefGoogle Scholar
  59. Pectasides D et al (1986) Antibody-guided irradiation of malignant pleural and pericardial effusions. Br J Cancer 53(6):727–732PubMedCentralPubMedCrossRefGoogle Scholar
  60. Piver MS et al (1988) Five and ten year estimated survival and disease-free rates after intraperitoneal chromic phosphate; stage I ovarian adenocarcinoma. Am J Clin Oncol 11(5):515–519PubMedCrossRefGoogle Scholar
  61. Pollock BE et al (1995) Phosphorus-32 intracavitary irradiation of cystic craniopharyngiomas: current technique and long-term results. Int J Radiat Oncol Biol Phys 33(2):437–446PubMedCrossRefGoogle Scholar
  62. Reardon DA et al (2008) A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 10(2):182–189PubMedCentralPubMedCrossRefGoogle Scholar
  63. Reeve TS, Myhill J (1962) The role of radioactive isotopes and alkylating agents in the treatment of malignant effusions. Med J Aust 49(2):245–249PubMedGoogle Scholar
  64. Richardson RB et al (1990) Dosimetry of intrathecal iodine131 monoclonal antibody in cases of neoplastic meningitis. Eur J Nucl Med 17(1–2):42–48PubMedCrossRefGoogle Scholar
  65. Riva P et al (1992) Treatment of intracranial human glioblastoma by direct intratumoral administration of 131I-labelled anti-tenascin monoclonal antibody BC-2. Int J Cancer 51(1):7–13PubMedCrossRefGoogle Scholar
  66. Riva P et al. (1994a) Intralesional radioimmunotherapy of malignant gliomas. An effective treatment in recurrent tumors. Cancer 73(3 Suppl):1076–1082Google Scholar
  67. Riva P et al (1994b) Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys 24–25:37–43CrossRefGoogle Scholar
  68. Riva P et al (1995) Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res 55(23 Suppl):5952s–5956sPubMedGoogle Scholar
  69. Riva P et al (1999) Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin Cancer Res 5(10 Suppl):3275s–3280sPubMedGoogle Scholar
  70. Riva P et al (2000) Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med 27(5):601–609PubMedCrossRefGoogle Scholar
  71. Rosenblum MG et al (1999) Phase I study of 90Y-labeled B72.3 intraperitoneal administration in patients with ovarian cancer: effect of dose and EDTA coadministration on pharmacokinetics and toxicity. Clin Cancer Res 5(5):953–961PubMedGoogle Scholar
  72. Sadeghi M et al (2007) Dosimetry of (32)P radiocolloid for treatment of cystic craniopharyngioma. Appl Radiat Isot 65(5):519–523PubMedCrossRefGoogle Scholar
  73. Sadeghi M, Karimi E, Hosseini SH (2009a) Dosimetric comparison of 90Y, 32P, and 186Re radiocolloids in craniopharyngioma treatments. Med Phys 36(11):5022–5026CrossRefGoogle Scholar
  74. Sadeghi M, Karimi E, Sardari D (2009b) Monte Carlo and analytical calculations of dose distributions in craniopharyngioma cysts treated with radiocolloids containing 32P or 186Re. Appl Radiat Isot 67(9):1697–1701CrossRefGoogle Scholar
  75. Saji H et al (2006) A possibility of overcoming local tumor immune tolerance by radiofrequency ablation in combination with intratumoral injection of naive dendritic cell. Gan To Kagaku Ryoho 33(12):1736–1738PubMedGoogle Scholar
  76. Scheer KE (1964) Radioactive colloids in the treatment of neoplastic effusions in the serous cavities. Minerva Nucl 55:123–126PubMedGoogle Scholar
  77. Shah JR, Warawdekar MS (1964) Radio active colloidal gold in the treatment of malignant pleural effusion. J Assoc Physicians India 12:63–67PubMedGoogle Scholar
  78. Shapiro B, Fig LM, Gross MD (1999) Intracavitary therapy of craniopharyngiomas. Q J Nucl Med 43(4):367–374PubMedGoogle Scholar
  79. Sklaroff DM (1965) Radioactive colloid treatment of malignant effusions. Pa Med J 68:41–43PubMedGoogle Scholar
  80. Sparks RB et al (2002) Radiation dose distributions in normal tissue adjacent to tumors containing (131)I or (90)Y: the potential for toxicity. J Nucl Med 43(8):1110–1114PubMedGoogle Scholar
  81. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027PubMedGoogle Scholar
  82. Tatter SB et al (2003) An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 99(2):297–303PubMedCrossRefGoogle Scholar
  83. Tautz M et al (1977) The radiation exposure of the RHS of the liver during intrathecal radio-gold therapy. Radiobiol Radiother (Berl) 18(6):745–750Google Scholar
  84. Tharp M, Hornback NB (1994) Complications associated with intraperitoneal 32P. Gynecol Oncol 53(2):170–175PubMedCrossRefGoogle Scholar
  85. Van den Berge JH et al (1992) Intracavitary brachytherapy of cystic craniopharyngiomas. J Neurosurg 77(4):545–550PubMedCrossRefGoogle Scholar
  86. van Dieren EB et al (1994) A dosimetric model for intrathecal treatment with 131I and 67 Ga. Int J Radiat Oncol Biol Phys 30(2):447–454PubMedCrossRefGoogle Scholar
  87. Verheijen RH et al (2006) Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol 24(4):571–578PubMedCrossRefGoogle Scholar
  88. Vassiliev ON et al (2008) Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations. Int J Radiat Oncol Biol Phys 72(1):220–227PubMedCentralPubMedCrossRefGoogle Scholar
  89. Wahl RL (1990) Intraperitoneal delivery of monoclonal antibodies. Cancer Treat Res 51:123–149PubMedCrossRefGoogle Scholar
  90. Wahl RL, Liebert M (1989) Improved radiolabeled monoclonal antibody uptake by lavage of intraperitoneal carcinomatosis in mice. J Nucl Med 30(1):60–65PubMedGoogle Scholar
  91. Wahl RL et al (1988) The intraperitoneal delivery of radiolabeled monoclonal antibodies: studies on the regional delivery advantage. Cancer Immunol Immunother 26(3):187–201PubMedCrossRefGoogle Scholar
  92. Wernicke AG et al (2010) The role of dose escalation with intracavitary brachytherapy in the treatment of localized CNS malignancies: outcomes and toxicities of a prospective study. Brachytherapy 9(1):91–99PubMedCrossRefGoogle Scholar
  93. Wilkinson RH Jr (1996) Pleuroperitoneal migration of intraperitoneal phosphorus-32-chromic phosphate therapy for stage I ovarian carcinoma. J Nucl Med 37(4):636–639PubMedGoogle Scholar
  94. Zhang M et al (1997) Intravenous avidin chase improved localization of radiolabeled streptavidin in intraperitoneal xenograft pretargeted with biotinylated antibody. Nucl Med Biol 24(1):61–64PubMedCrossRefGoogle Scholar
  95. Zhao R et al (2010) Treatment of cystic craniopharyngioma with phosphorus-32 intracavitary irradiation. Childs Nerv Syst 26(5):669–674PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Nuclear Medicine and Neuro-Oncology, M. D. Anderson Cancer CenterThe University of TexasHoustonUSA

Personalised recommendations