Radioimmunotherapy in Metastatic Colorectal Cancer

  • Johannes Meller
  • Torsten Liersch
  • Birgit Meller
  • Kia Homayounfar
  • Carsten-Oliver Sahlmann
Part of the Medical Radiology book series (MEDRAD)


Based on the recent results from first-line treatment of metastatic colorectal cancer that clearly display the limits of intensifying systemic 5FU-based chemotherapy, at least on the basis of established drugs like oxaliplatin and irinotecan in combination with biological agents, alternative anti-cancer strategies like radioimmunotherapy (RAIT) are needed to be evaluated. However, in contrast to the encouraging results of RAIT in several preclinical colorectal cancer models, the efficacy of this method in patients with metastatic disease remains disappointing. Therefore, our group has focused on anti-CEA RAIT with 131I-Labetuzumab in patients post-salvage resection of CEA-expressing colorectal cancer liver metastases (CRC-LM). In phase I/II-trials both, the single and repeated application of 131I-Labetuzumab has been proven to be safe and feasible with acceptable side effects and high patient compliance. The disease-free survival and overall survival were significantly prolonged compared to matched contemporaneous control groups without RAIT treated at the same institution by identical surgeons during the same time period. Anti-CEA RAIT with 131I-Labetuzumab, as a targeted systemic therapy, offers a new, potent strategy for the “pseudoadjuvant” treatment of patients with CRC-LM. In the near future, further improvement is awaited by the implementation of pretargeting strategies.


Overall Survival Maximum Tolerate Dose Medullary Thyroid Cancer Epithelial Cell Adhesion Molecule Murine Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdalla EK, Vauthey JN, Ellis LM et al (2004) Recurrence and outcome following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metasatses. Ann Surg 239:818–825PubMedCentralPubMedGoogle Scholar
  2. Abdalla EK, Adam R, Bilchik AJ (2006) Improving resectability of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 13:1271–1280PubMedGoogle Scholar
  3. Adam R (2003) Chemotherapy and surgery: new perspectives on the treatment of unresectable liver metastases. Ann Oncol 14(S2):ii13–ii6Google Scholar
  4. Adam R, Avisar E, Ariche A et al (2001) Five-year survival following hepatic resection after neoadjuvant therapy for nonresectable colorectal cancer. Ann Surg Oncol 8:347–353PubMedGoogle Scholar
  5. Adam R, Delvart V, Pascal G et al (2004a) Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240:644–657PubMedCentralPubMedGoogle Scholar
  6. Adam R, Pascal G, Castaing D et al (2004b) Tumor progression while on chemotherapy: a contraindication to liver resection for multiple colorectal metastases? Ann Surg 240:1052–1061PubMedCentralPubMedGoogle Scholar
  7. Adam R, Wicherts DA, de Haas RJ et al (2008) Complete pathologic response after preoperative chemotherapy for colorectal liver metastases: myth or reality? J Clin Oncol 26:1635–1641PubMedGoogle Scholar
  8. Adam R, Wicherts DA, de Haas RJ et al (2009) Patients with initially unresectable colorectal liver metastases: is there a possibility of cure? J Clin Oncol 27:1829–1835PubMedGoogle Scholar
  9. Agata N, Ahmad R, Kawano T et al (2008) MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res 68:6136–6144PubMedCentralPubMedGoogle Scholar
  10. Alberts SR, Horvath WL, Sternfeld WC et al (2005) Oxaliplatin, fluorouracil, and leucovorin for patients with unresectable liver-only metastases from colorectal cancer: a North Central Cancer Treatment Group phase II study. J Clin Oncol 23:9243–9249PubMedGoogle Scholar
  11. Allen PJ, Kemeny N, Jarnagin W et al (2003) Importance of response to neoadjuvant chemotherapy in patients undergoing resection of synchronous colorectal liver metastases. J Gastrointest Surg 7:109–115PubMedGoogle Scholar
  12. Almqvist Y, Steffen AC, Tolmachev V et al (2006) In vitro and in vivo characterization of 177Lu-huA33: a radioimmunoconjugate against colorectal cancer. Nucl Med Biol 33:991–998PubMedGoogle Scholar
  13. Armstrong A, Eck SL (2003) EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol Ther 2:320–326PubMedGoogle Scholar
  14. Baldus SE, Monig SP, Huxel S et al (2004) MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res 10:2790–2796PubMedGoogle Scholar
  15. Beauchemin N, Draber P, Dveksler G et al (1999) Redefined nomenclature for members of the carcinoembryonic antigen family. Exp Cell Res 252:243–249PubMedGoogle Scholar
  16. Behr TM, Juweid ME, Sharkey RM et al (1996) Thyroid radiation doses during radioimmunotherapy of CEA-expressing tumours with 131I-labelled monoclonal antibodies. Nucl Med Commun 17:767–780PubMedGoogle Scholar
  17. Behr TM, Sharkey RM, Juweid ME et al (1997) Phase I/II clinical radioimmunotherapy with aniodine-131-labeled anti-carcinoembryonic antigen murinemonoclonal antibody IgG. J Nucl Med 38:858–870PubMedGoogle Scholar
  18. Behr TM, Memtsoudis S, Vougioukas V et al (1999a) Radioimmunotherapy of colorectal cancer in small volume disease and in an adjuvant setting: preclinical evaluation in comparison to equitoxic chemotherapy and initial results of an ongoing phase-I/II clinical trial. Anticancer Res 19:2427–2432PubMedGoogle Scholar
  19. Behr TM, Salib AL, Liersch T et al (1999b) Radioimmunotherapy of small volume disease of colorectal cancer metastatic to the liver: preclinical evaluation in comparison to standard chemotherapy and initial results of a phase I clinical study. Clin Cancer Res 5:3232S–3242SPubMedGoogle Scholar
  20. Behr TM, Liersch T, Greiner-Bechert L et al (2002) Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer 94:1373S–1381SGoogle Scholar
  21. Benchimol S, Fuks A, Jothy A et al (1989) Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57:327–334PubMedGoogle Scholar
  22. Benoist S, Nordlinger B (2009) The role of preoperative chemotherapy in patients with resectable colorectal liver metastases. Ann Surg Oncol 16:2385–2390PubMedGoogle Scholar
  23. Bhargava KK, Acharya SA (1989) Labeling of monoclonal antibodies with radionuclides. Semin Nucl Med 19:187–201PubMedGoogle Scholar
  24. Bjerner J, Lebedin Y, Bellanger L et al (2002) Protein epitopes in carcinoembryonic antigen. Report of the ISOBM TD8 workshop. Tumour Biol 23:249–262PubMedGoogle Scholar
  25. Blumenthal RD, Sharkey RM, Haywood L et al (1992) Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res 52:6036–6044PubMedGoogle Scholar
  26. Blumenthal RD, Osorio L, Hayes MK et al (2005) Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54:315–327PubMedGoogle Scholar
  27. Bokemeyer C, Bondarenko I, Makhson A et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671PubMedGoogle Scholar
  28. Boswell CA, Regino CA, Baidoo KE et al (2009) A novel side-bridged hybrid phosphonate/acetate pendant cyclam: synthesis, characterization, and 64Cu small animal PET imaging. Bioorg Med Chem 17:548–552PubMedCentralPubMedGoogle Scholar
  29. Bresaier RS, Niv Y, Byrd JC et al (1991) Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Invest 87:1037–1045Google Scholar
  30. Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99PubMedGoogle Scholar
  31. Cardillo TM, Ying Z, Gold DV (2001) Therapeutic advantage of (90)Yttrium- versus (131)Iodine-labeled PAM4 antibody in experimental pancreatic cancer. Clin Cancer Res 7:3186–3192PubMedGoogle Scholar
  32. Chong G, Lee F-T, Hopkins W et al (2005) Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res 11:4818–4826PubMedGoogle Scholar
  33. Choti MA, Sitzmann JV, Tiburi MF et al (2002) Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 235:759–766PubMedCentralPubMedGoogle Scholar
  34. De Jong G, Hendriks T, Eek A et al (2009) Radioimmunotherapy improves survival of rats with microscopic liver metastases of colorectal origin. Ann Surg Oncol 16:2065–2073PubMedCentralPubMedGoogle Scholar
  35. Delaloye AB, Delaloye B, Buchegger F et al (1997) Comparison of copper-67- and iodine-125-labeled anti-CEA monoclonal antibody biodistribution in patients with colorectal tumors. J Nucl Med 38:847–853PubMedGoogle Scholar
  36. Divgi CR, Scott AM, Dantis L et al (1995) Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. J Nucl Med 36:586–592PubMedGoogle Scholar
  37. Duncan TJ, Watson NF, Al-Attar AH et al (2007) The role of MUC1 and MUC3 in the biology and prognosis of colorectal cancer. World J Surg Oncol 5:31–41PubMedCentralPubMedGoogle Scholar
  38. Ekberg H, Tranberg KG, Andersson R et al (1986) Determinants of survival in liver resection for colorectal secondaries. Br J Surg 73:727–731PubMedGoogle Scholar
  39. Fidarova EF, El-Emir E, Boxer GM et al (2008) Microdistribution of targeted, fluorescently labelled anti-carcinoembryonic antigen antibody in metastatic colorectal cancer: implications for radioimmunotherapy. Clin Cancer Res 14:2639–2646PubMedGoogle Scholar
  40. Figueras J, Valls C, Rafecas A et al (2001) Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastases. Br J Surg 88:980–985PubMedGoogle Scholar
  41. Folprecht G, Grothey A, Alberts S et al (2005) Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 16:1311–1319PubMedGoogle Scholar
  42. Folprecht G, Gruenberger T, Bechstein WO et al (2010) Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomized trial. Lancet Oncol 11:38–47PubMedGoogle Scholar
  43. Fong Y (1999) Surgical therapy of hepatic colorectal metastasis. CA Cancer J Clin 49:231–255PubMedGoogle Scholar
  44. Forero A, Meredith RF, Khazaeli MB et al (2003) A novel monoclonal antibody design for radioimmunotherapy. Cancer Biother Radiopharm 18:751–759PubMedGoogle Scholar
  45. Forero-Torres A, Shen S, Breitz H et al (2005) Pretargeted radioimmunotherapy (RIT) with a novel anti-TAG-72 fusion protein. Cancer Biother Radiopharm 20:379–390PubMedGoogle Scholar
  46. Geissler F, Anderson SK, Venkatesan P et al (1992) Intracellular catabolism of radiolabeled anti-mu antibodies by malignant B-cells. Cancer Res 52:2907–2915PubMedGoogle Scholar
  47. Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122:467–481PubMedCentralPubMedGoogle Scholar
  48. Gold P, Goldenberg NA (1997) The carcinoembryonic antigen (CEA): past, present, and future. McGill J Med 3:46–66Google Scholar
  49. Gold DV, Nocera MA, Stephens R et al (1990) Murine monoclonal antibodies to colon-specific antigen p1. Cancer Res 50:6405–6409PubMedGoogle Scholar
  50. Gold DV, Schutzky K, Modrak D et al (2003) Low-dose radioimmunotherapy 90Y-PAM4 combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res 9:3929S–3937SPubMedGoogle Scholar
  51. Gold DV, Modrak DE, Ying Z et al (2006) New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis. J Clin Oncol 24:252–258PubMedGoogle Scholar
  52. Gold DV, Karanjawala Z, Modrak DE et al (2007) PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma. Clin Cancer Res 13:7380–7387PubMedGoogle Scholar
  53. Gold DV, Goldenberg DM, Karacay H et al (2008) A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res 68:4819–4826PubMedGoogle Scholar
  54. Goldenberg DM, Sharkey RM, Primus FJ (1976) Carcinoembryonic antigen in histopathology: immunperoxidase staining of conventional tissue sections. J Natl Cancer Inst 57:11–22PubMedGoogle Scholar
  55. Goldenberg DM, Sharkey RM, Paganelli G et al (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24:823–834PubMedGoogle Scholar
  56. Goldenberg DM, Chatal JF, Barbet J et al (2007) Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther 2:19–31PubMedCentralPubMedGoogle Scholar
  57. Grimm T, Riethmüller G, Johnson JP (1994) Characteristics of carcinoembryonic antigen (CEA) expressed in different cell types: evidence that CEA can function as an adhesion molecule and as a repulsion molecule. Biochem Biophys Res Comm 204:1225–1234PubMedGoogle Scholar
  58. Grothey A, Sargent D, Goldberg RM et al (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22:1209–1214PubMedGoogle Scholar
  59. Gulec SA, Pennington K, Bruetmann D et al (2007) A phase I study of 90Y-hPAM4 (humanized anit-MUC1 monoclonal antibody) in patients with unresectable and metastatic pancreatic cancer [abstract 1664—SNM 54th Annual Meeting]. J Nucl Med 48:393SGoogle Scholar
  60. Hajjar G, Sharkey RM, Burton J et al (2002) Phase I radioimmunotherapy trial with iodine-131-labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer 2:31–42PubMedGoogle Scholar
  61. Hammarström S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81PubMedGoogle Scholar
  62. Hammarström S, Olsen A, Teglund S et al (1998) The nature and expression of the human CEA family. In: Stanners CP (ed.) Cell adhesion and communications mediated by the CEA family basic and clinical perspectives, vol 5. Harwood Academic, Amsterdam, pp 1–30Google Scholar
  63. Hansen HJ, Goldenberg DM, Newman ES et al (1993) Characterization of second-generation monoclonal antibodies against carcinoembryonic antigen. Cancer 71:3478–3485PubMedGoogle Scholar
  64. Heath JK, White SJ, Johnstone CN et al (1997) The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci USA 94:469–474PubMedCentralPubMedGoogle Scholar
  65. Hefta SA, Hefta LJ, Lee TD et al (1988) Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Proc Natl Acad Sci USA 85:4648–4652PubMedCentralPubMedGoogle Scholar
  66. Hernandez MC, Knox SJ (2003) Radiobiology of radioimmunotherapy with 90Y ibritumomab tiuxetan (Zevalin). Semin Oncol 30:6–10PubMedGoogle Scholar
  67. Homayounfar K, Liersch T, Schuetze G et al (2009) Two-stage hepatectomy (R0) with portal vein ligation—towards curing patients with extended bilobar colorectal liver metastases. Int J Colorectal Dis 24:409–418PubMedCentralPubMedGoogle Scholar
  68. Hostetter RB, Augustus LB, Mankarious R et al (1990) Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastasis. J Natl Cancer Inst 125:300–304Google Scholar
  69. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedGoogle Scholar
  70. Huvos AG, Hutter RV, Berg JW (1971) Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg 173:44–46PubMedCentralPubMedGoogle Scholar
  71. Jaeck D, Oussoultzoglou E, Rosso E et al (2004) A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann Surg 240:1037–1051PubMedCentralPubMedGoogle Scholar
  72. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3038–3050Google Scholar
  73. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814S–819SPubMedGoogle Scholar
  74. Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65PubMedGoogle Scholar
  75. Jain RK (2004) Vascular and interstitial biology of tumors. In: Abeleff M, Armitage J, Niederhuber J, Kastan M, McKenna G (eds) Clinical Oncology, 3rd edn. Elsevier, Philadelphia, pp 153–172Google Scholar
  76. Jain RK (2005) Normalization of the tumor vasculature: an emerging concept in anti-angiogenic therapy of breast cancer. Science 307:58–62PubMedGoogle Scholar
  77. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032PubMedGoogle Scholar
  78. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics 2009. CA Cancer J Clin 59:225–249PubMedGoogle Scholar
  79. Jessup JM, Thomas P (1998) CEA and metastasis: a facilitator of site-specific metastasis. In: Stanners CP (ed) Cell adhesion and communication by the CEA family, vol 5. Harwood Academic, Amsterdam, pp 195–222Google Scholar
  80. Johnstone CN, White SJ, Tebbutt NC et al (2002) Analysis of the regulation of the A33 antigen gene reveals intestine-specific mechanisms of gene expression. J Biol Chem 277(37):34531–34539 (Epub 2002 July 11)Google Scholar
  81. Juweid M, Sharkey RM, Swayne LC et al (1998) Pharmacokinetics, dosimetry and toxicity of rhenium-188-labeled anti-carcinoembryonic antigen monoclonal antibody, MN-14, in gastrointestinal cancer. J Nucl Med 39:34–42PubMedGoogle Scholar
  82. Karacay H, Sharkey RM, Gold DV et al (2009) Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10–90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med 50:2008–2016PubMedGoogle Scholar
  83. Kathri VP, Petrelli NJ, Belghiti J (2005) Extending the frontiers of surgical therapy for hepatic colorectal metastases: Is there a limit? J Clin Oncol 23:8490–8499Google Scholar
  84. Kato T, Yasui K, Hirai T et al (2003) Therapeutic results for hepatic metastasis of colorectal cancer with special reference to effectiveness of hepatectomy: analysis of prognostic factors for 7653 cases recorded at 18 institutions. Dis Colon Rectum 46(10 Suppl):S22–S31PubMedGoogle Scholar
  85. Kattan MW, Gönen M, Jarnagin WR et al (2008) A normogram for predicting disease-specific survival after hepatic resection for metastatic colorectal cancer. Ann Surg 247:282–287PubMedGoogle Scholar
  86. Kenanova V, Olafsen T, Crow DM et al (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65:622–631PubMedGoogle Scholar
  87. Kim ES, Khuri FR, Herbst R (2001) Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol 13:506–513PubMedGoogle Scholar
  88. King DJ, Antoniw P, Owens RJ et al (1995) Preparation and preclinical evaluation of humanised A33 immunoconjugates for radioimmunotherapy. Br J Cancer 72(6):1364–1372Google Scholar
  89. Knox SJ, Goris ML, Tempero M et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414PubMedGoogle Scholar
  90. Koppe MJ, Bleichrodt RP, Oyen WJ et al (2005) Radioimmunotherapy and colorectal cancer. Br J Surg 92:264–276 (Review)Google Scholar
  91. Koprowski H, Steplewski Z, Mitchell K et al (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 5:957–971PubMedGoogle Scholar
  92. Kornprat P, Jarnagin WR, Gonen M et al (2007) Outcome after hepatectomy for multiple (four or more) colorectal metastases in the era of effective chemotherapy. Ann Surg Oncol 14:1151–1160PubMedGoogle Scholar
  93. Kraeber-Bodéré F, Rousseau C, Bodet-Milin C et al (2006) Targeting, toxicity, and efficacy of two-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med 47:247–255PubMedGoogle Scholar
  94. Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev 9:874–885Google Scholar
  95. Lane DM, Eagle KF, Begent RH et al (1994) Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labelled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab_)2 antibodies. Br J Cancer 70:521–525PubMedCentralPubMedGoogle Scholar
  96. Le Doussal JM, Chetanneau A, Gruaz-Guyon A et al (1993) Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTPA dimer to primary colorectal tumors: pharmacokinetics, biodistribution, scintigraphy and immune response. J Nucl Med 34:1662–1671PubMedGoogle Scholar
  97. Leconte A, Garambois V, Ychou M et al (1999) Involvement of circulating CEA in liver metastases from colorectal cancers re-examined in a new experimental model. Br J Cancer 80:1373–1379PubMedCentralPubMedGoogle Scholar
  98. Lee S, Yang W, Lan KH et al (2002) Enhanced sensitization to taxol-induced apoptosis by herceptin prtreatment in ErbB2-overexpressing breast cancer cells. Cancer Res 62:5703–5710PubMedGoogle Scholar
  99. Liersch T, Meller J, Kulle B et al (2005) Phase-II trial of CEA radioimmunotherapy with 131I-labetuzumab indicates survival improvement post salvage resection of colorectal metastases in the liver. J Clin Oncol 23:6763–6770; In reply: Liersch T, Becker H, Goldenberg DM (2006). J Clin Oncol 24:2680–2681Google Scholar
  100. Liersch T, Meller J, Bittrich M et al (2007) Update of CEA radioimmunotherapy with 131I-labetuzumab following salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol 14:2577–2590PubMedGoogle Scholar
  101. Liersch T, Meller J, Sahlmann CO et al (2009) Efficacy of repeated anti-CEA-radioimmunotherapy (RAIT) with 131Iodine(I)-labetuzumab (phase II study) in patients with colorectal cancer (CRC) after salvage resection of multiple liver metastases (CRC-LM). Gastrointestinal Cancers Symposium, San Francisco, abstract 459Google Scholar
  102. Lillehoj EP, Lu W, Kiser T et al (2007) MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism. Biochem Biophys Acta 1773:1028–1038PubMedCentralPubMedGoogle Scholar
  103. Manfredi S, Lepage C, Hatem C et al (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244:254–259PubMedCentralPubMedGoogle Scholar
  104. McBride WJ, Zanzonico P, Sharkey RM et al (2006) Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med 47:1678–1688PubMedGoogle Scholar
  105. McCarter MD, Fong Y (2000) Metastatic liver tumors. Semin Surg Oncol 19:177–188PubMedGoogle Scholar
  106. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–2799PubMedGoogle Scholar
  107. Meredith RF, Khazaeli MB, Plott WE et al (1992a) Phase I trial of iodine-131-chimeric B72.3 (human IgG4) in metastatic colorectal cancer. J Nucl Med 33:23–29PubMedGoogle Scholar
  108. Meredith RF, Khazaeli MB, Liu T et al (1992b) Dose fractionation of radiolabeled antibodies in patients with metastatic colon cancer. J Nucl Med 33:1648–1653PubMedGoogle Scholar
  109. Meredith RF, Khazaeli MB, Plott WE et al (1995) Initial clinical evaluation of iodine-125-labeled chimeric 17–1A for metastatic colon cancer. J Nucl Med 36:2229–2233PubMedGoogle Scholar
  110. Meredith RF, Khazaeli MB, Plott WEJ et al (1996) Phase II study of dual 131I-labeled monoclonal antibody therapy with interferon in patients with metastatic colorectal cancer. Clin Cancer Res 2:1811–1818PubMedGoogle Scholar
  111. Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487PubMedGoogle Scholar
  112. Milenic DE, Garmestani K, Chappell LL et al (2002) In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl Med Biol 29:431–442PubMedGoogle Scholar
  113. Mitry E, Fields AL, Bleiberg H et al (2008) Adjuvant chemotherapy after potentially curative resection of metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 26:4906–4911PubMedGoogle Scholar
  114. Mittal BB, Zimmer MA, Sathiaseelan V et al (1996) Phase I/II trial of combined 131I anti-CEA monoclonal antibody and hyperthermia in patients with advanced colorectal adenocarcinoma. Cancer 78:1861–1870PubMedGoogle Scholar
  115. Mukherjee P, Pathangey LB, Bradley JB et al (2007) MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 25:1607–1618PubMedCentralPubMedGoogle Scholar
  116. Mulligan T, Carrasquillo JA, Chung Y et al (1995) Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin Cancer Res 1:1447–1454PubMedGoogle Scholar
  117. Murray JL, Macey DJ, Kasi LP et al (1994) Phase II radioimmunotherapy trial with 131I-CC49 in colorectal cancer. Cancer 73:1057S–1066SGoogle Scholar
  118. Naundorf S, Preithneg S, Mayer P et al (2002) In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. Int J Cancer 100:101–110PubMedGoogle Scholar
  119. Netti PA, Berk DA, Swartz MA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503PubMedGoogle Scholar
  120. Neumaier M, Shively L, Chen FS et al (1990) Cloning of the genes for T84.66, an antibody that has a high specificity and affinity for carcinoembryonic antigen, and expression of chimeric human/mouse T84.66 genes in myeloma and Chinese hamster ovary cells. Cancer Res 50:2128–2134PubMedGoogle Scholar
  121. Niv Y (2008) MUC1 and colorectal cancer pathophysiology considerations. World J Gastroenterol 14(14):2139–2141Google Scholar
  122. Nordlinger B, Sorbye H, Glimelius B et al (2008) Perioprative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 371:1007–1016PubMedCentralPubMedGoogle Scholar
  123. Nordlinger B, Van Cutsem E, Gruenberger T et al (2009) Combination of surgery and chemotherapy and the role of targeted agents in the treatment of patients with colorectal liver metastases: recommendations from an expert panel. Ann Oncol 20:985–992PubMedGoogle Scholar
  124. Novak-Hofer I, Schubiger PA (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29:821–830PubMedGoogle Scholar
  125. O`Connell JB, Maggard MA, Ko CY et al (2004) Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 96:1420–1425Google Scholar
  126. Oikawa S, Imajo S, Noguchi T, Kosaki G et al (1987) The carcinoembryonic antigen (CEA) contains multiple immunoglobulin-like domains. Biochem Biophys Res Commun 144:634–642PubMedGoogle Scholar
  127. Oikawa S, Inuzuka C, Kuroki M et al (1989) Cell adhesion activity of non-specific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) expressed on CHO cell surface: homophilic and heterophilic adhesion. Biochem Biophys Res Commun 164:39–45PubMedGoogle Scholar
  128. Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916PubMedGoogle Scholar
  129. Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886PubMedGoogle Scholar
  130. Padera T, Stoll B, Tooredman J et al (2004) Pathology: cancer cells compress intratumor vessels. Nature 427:695PubMedGoogle Scholar
  131. Pant KD, Dahlman HL, Goldenberg DM (1977) A putatively new antigen (CSAp) associated with gastrointestinal and ovarian neoplasia. Immunol Commun 6:411–421PubMedGoogle Scholar
  132. Parks R, Gonen M, Kemeny N et al (2007) Adjuvant chemotherapy improves survival after resection of hepatic colorectal metastases: analysis of data from two continents. J Am Coll Surg 204:753–761; discussion 761–753Google Scholar
  133. Pawlik TM, Schulick RD, Choti MA (2008) Expanding criteria for resectability of colorectal liver metastases. Oncologist 13:51–64PubMedGoogle Scholar
  134. Peltier P, Curtet C, Chatal JF et al (1993) Radioimmunodetection of medullary thyroid cancer using a bispecific anti-CEA/anti-indium-DTPA bispecific antibody and an indium-111-labeled dimer. J Nucl Med 34:1267–1273PubMedGoogle Scholar
  135. Pennington K, Guarino MJ, Serafini AN et al (2009) Multicenter study of radiosensitizing gemcitabine combined with fractionated radioimmunotherapy for repeated treatment cycles in advanced pancreatic cancer [abstract 4620—ASCO]. J Clin Oncol 27:15SGoogle Scholar
  136. Portier G, Elias D, Bouche O et al (2006) Multicenter randomized trial of adjuvant fluorouracil and folinic acid compared with surgery alone after resection of colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin Oncol 24:4976–4982PubMedGoogle Scholar
  137. Primus FJ, Kuhns WJ, Goldenberg DM (1983) Immunological heterogeneity of carcinoembryonic antigen: immunohistochemical detection of carcinoembryonic antigen determinants in colonic tumors with monoclonal antibodies. Cancer Res 43:693–701PubMedGoogle Scholar
  138. Rees M, Tekkis PP, Welsh FK et al (2008) Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multifactorial model of 929 patients. Ann Surg 247:125–135PubMedGoogle Scholar
  139. Rogers BE, Anderson CJ, Connett JM et al (1996) Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjug Chem 7:511–522PubMedGoogle Scholar
  140. Rossi EA, Goldenberg DM, Cardillo TM et al (2006) Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 103:6841–6846PubMedCentralPubMedGoogle Scholar
  141. Schmiegel W, Pox C, Reinacher-Schick A et al (2010) S3-guideline for colorectal carcinoma: results of an evidence-based consensus conference on February 6/7, 2004 and June 8/9, 2007 (for the topics IV, VI and VII). Z Gastroenterol 48:65–136PubMedGoogle Scholar
  142. Scott AM, Lee FT, Jones R et al (2005) A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res 11:4810–4817PubMedGoogle Scholar
  143. Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46:115S–127SPubMedGoogle Scholar
  144. Sharkey RM, Goldenberg DM (2006a) Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. Cancer J Clin 56:226–243Google Scholar
  145. Sharkey RM, Goldenberg DM (2006b) Advances in radioimmunotherapy in the age of molecular engineering and pretargeting. Cancer Invest 24:82–97PubMedGoogle Scholar
  146. Sharkey RM, Goldenberg DM (2008) Novel radioimmunpharmaceuticals for cancer imaging and therapy. Curr Opin Invest Drugs 9:1302–1316Google Scholar
  147. Sharkey RM, Weadock KS, Natale A et al (1991) Successful radioimmunotherapy for lung metastasis of human colonic cancer in nude mice. J Natl Cancer Inst 83:627–632PubMedGoogle Scholar
  148. Sharkey RM, Goldenberg DM, Vagg R et al (1994) Phase I clinical evaluation of a new murine monoclonal antibody (Mu-9) against colon-specific antigen-p for targeting gastrointestinal carcinomas. Cancer 73:864S–877SGoogle Scholar
  149. Sharkey RM, Juweid M, Shevitz J et al (1995) Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res 55:5935S–5945SPubMedGoogle Scholar
  150. Sharkey RM, Blumenthal RD, Behr TM et al (1997) Selection of radioimmunoconjugates for the therapy of well-established or micrometastatic colon carcinoma. Int J Cancer 72:477–485PubMedGoogle Scholar
  151. Sharkey RM, Karacay H, Cardillo TM et al (2005) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109S–7121SPubMedGoogle Scholar
  152. Sharkey RM, Karacay H, Litwin S et al (2008) Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res 68:5282–5529PubMedCentralPubMedGoogle Scholar
  153. Simmonds PC, Pimrose JN, Colquitt JL et al (2006) Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer 94:982–999PubMedCentralPubMedGoogle Scholar
  154. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792PubMedGoogle Scholar
  155. Smith MD, McCall JL (2009) Systematic review of tumour number and outcome after radical treatment of colorectal liver metastases. Br J Surg 96:1101–1113PubMedGoogle Scholar
  156. Soeth E, Wirth T, List HJ et al (2001) Controlled ribozyme targeting demonstrates an antiapoptotic effect of carcinoembryonic antigen in HT-29 colon cancer cells. Clin Cancer Res 7:2022–2030PubMedGoogle Scholar
  157. Stein R, Govindan SV, Hayes M et al (2005) Advantage of a residualizing iodine radiolabel in the therapy of a colon cancer xenograft targeted with an anticarcinoembryonic antigen monoclonal antibody. Clin Cancer Res 11:2727–2734PubMedGoogle Scholar
  158. Stya M, Wahl RL, Natale RB et al (1987) Radioimmunoimaging of human small cell lung carcinoma xenografts in nude mice receiving several monoclonal antibodies. NCI Monogr 3:19–23PubMedGoogle Scholar
  159. Tannapfel A, Reinacher-Schick A (2008) Chemotherapy associated hepatotoxicity in the treatment of advanced colorectal cancer (CRC). Z Gastroenterol 46:435–440PubMedGoogle Scholar
  160. Tejpar S, Van Cutsem E, Adam R (2010) Improved first-line chemotherapy: a better chance for surgery? Lancet Oncol 11:4–5PubMedGoogle Scholar
  161. Thor A, Ohuchi N, Szpak CA et al (1986) Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res 46:3118–3124PubMedGoogle Scholar
  162. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572PubMedGoogle Scholar
  163. Trzpis M, McLaughlin PM, de Leij LM et al (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395PubMedCentralPubMedGoogle Scholar
  164. Valentini V, Aristei C, Glimelius B, et al On behalf of the Scientific Committee (2009) Multidisciplinary rectal cancer management: 2nd European Rectal Cancer Consensus Conference (EURECCA-CC2). Radiother Oncol 92:148–163Google Scholar
  165. Van Cutsem E, Nordlinger B, Adam R et al (2006) On behalf of European Colorectal Metastases Treatment Group. Towards a pan-Europe consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 42:2212–2221Google Scholar
  166. Von Kleist S, Migule I, Halla B (1995) Possible function of CEA as cell-contact inhibitory molecule. Anticancer Res 15:1889–1894Google Scholar
  167. Vuillez JP, Moro D, Brichon PY et al (1997) Two-step immunoscintigraphy for non-small cell lung cancer staging using a bispecific anti-CEA/anti-indium-DTPA antibody and an indium-111-labeled DTPA dimer. J Nucl Med 38:507–511PubMedGoogle Scholar
  168. Welt S, Divgi CR, Real FX et al (1990) Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33. J Clin Oncol 8:1894–1906PubMedGoogle Scholar
  169. Welt S, Divgi CR, Kemeny N et al (1994) Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 12:1561–1571PubMedGoogle Scholar
  170. Welt S, Scott AM, Divgi CR et al (1996) Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 14:1787–1797PubMedGoogle Scholar
  171. Welt S, Ritter G, Williams C Jr et al (2003) Phase I study of anticolon cancer humanized antibody A33. Clin Cancer Res 9:1338–1346PubMedGoogle Scholar
  172. Wicherts DA, Miller R, de Haas RJ et al (2008) Long-term results of two-stage hepatectomy for irresectable colorectal cancer liver metastases. Ann Surg 248:626–637PubMedGoogle Scholar
  173. Wong JYC, Chu DZ, Yamauchi DM et al (2000) A phase I radioimmunotherapy trial evaluating (90)yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin Cancer Res 6:3855–3863PubMedGoogle Scholar
  174. Wong JY, Shibata S, Williams LE et al (2003) A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res 9:5842–5852 (Review)Google Scholar
  175. Wong JY, Chu DZ, Williams LE et al (2006) A phase I trial of (90)Y-DOTA-anti-CEA chimeric T84.66 (cT84.66) radioimmunotherapy in patients with metastatic CEA-producing malignancies. Cancer Biother Radiopharm 21:88–100PubMedGoogle Scholar
  176. Ychou M, Azria D, Menkarios C et al (2008) Adjuvant radioimmunotherapy trial with Iodine-131–labeled anti-carcinoembryonic antigen monoclonal antibody F6 F(ab`)2 after resection of liver metastases from colorectal cancer. Clin Cancer Res 14:3487–3492PubMedCentralPubMedGoogle Scholar
  177. Ychou M, Hohenberger W, Thezenas S et al (2009) A randomized phase III study comparing adjuvant 5-fluorouracil/folinic acid with FOLFIRI in patients following complete resection of liver metastases from colorectal cancer. Ann Oncol 20:1964–1970PubMedGoogle Scholar
  178. Yordanov AT, Hens M, Pegram C et al (2007) Antitenascin antibody 81C6 armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands. Nucl Med Biol 34:173–183PubMedGoogle Scholar
  179. You JF, Hsieh LL, Changchien CR et al (2006) Inverse effects of mucin on survival of matched hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer patients. Clin Cancer Res 12:4244–4250PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Meller
    • 1
  • Torsten Liersch
    • 2
  • Birgit Meller
    • 3
  • Kia Homayounfar
    • 2
  • Carsten-Oliver Sahlmann
    • 4
  1. 1.Abteilung Nuklearmedizin, Zentrum RadiologieGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Abteilung Allgemein- und Viszeralchirurgie, Zentrum ChirurgieGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.Klinik für NuklearmedizinZentrum Radiologie; Georg-August-Universität Göttingen and Martin-Luther-Universität Halle/SaaleGöttingenGermany
  4. 4.Abteilung Nuklearmedizin, Zentrum RadiologieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations