Radioimmunotherapy of Tumors: Pretargeting with Bispecific Antibodies

Part of the Medical Radiology book series (MEDRAD)


The targeting of radionuclides with antibodies has been a very productive line of investigation for many years. Starting in the middle of the last century at a time before well-defined tumor markers were available, this effort has been at the center of a host of innovations, including the development of monoclonal antibodies, molecularly engineered antibodies and other antibody-related compounds, new procedures for manufacturing radionuclides, and their coupling to antibodies. Progress has led to the approval of two therapeutic agents for select lymphomas, but the therapeutic window is limited by hematological toxicity because the radioactivity bound to an antibody stays in the bloodstream for extended periods. Antibody fragments reduce red marrow exposure, but have not enhanced the therapeutic window sufficiently. An alternative approach known as pretargeting greatly reduces the radioactivity’s residence time in the blood and accelerates the time to maximum tumor accretion while maintaining high tumor uptake. This chapter focuses on the progress being made in using bispecific antibody pretargeting for improved delivery of therapeutic radionuclides.


Medullary Thyroid Cancer Bispecific Antibody Hapten System Medullary Thyroid Cancer Patient Human Lymphoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our many colleagues who have contributed to our research efforts in pretargeting, particularly Jacques Barbet, Ph.D., Professor Otto Boerman, Ph.D., Thomas M. Cardillo, Ph.D., Chien-Hsing Chang, Ph.D., Professor Jean-François Chatal, M.D., Ph.D., Habibe Karacay, Ph.D., Professor Françoise Kraeber-Bodéré, M.D., Ph.D., Docent Torsten Liersch, M.D., William J. McBride, Ph.D., Professor Johannes Meller, M.D., and Edmund A. Rossi, Ph.D. The authors have been supported in part by PHS grants P01 CA103985 and R01 CA107088 from the National Institutes of Health.


  1. Barbet J, Peltier P, Bardet S et al (1998) Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med 39:1172–1178PubMedGoogle Scholar
  2. Barbet J, Kraeber-Bodere F, Vuillez JP, Gautherot E, Rouvier E, Chatal JF (1999) Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 14:153–166PubMedCrossRefGoogle Scholar
  3. Bardies M, Bardet S, Faivre-Chauvet A et al (1996) Bispecific antibody and iodine-131-labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer. J Nucl Med 37:1853–1859PubMedGoogle Scholar
  4. Boerman OC, Kranenborg MH, Oosterwijk E et al (1999) Pretargeting of renal cell carcinoma: improved tumor targeting with a bivalent chelate. Cancer Res 59:4400–4405PubMedGoogle Scholar
  5. Chatal JF, Faivre-Chauvet A, Bardies M, Peltier P, Gautherot E, Barbet J (1995) Bifunctional antibodies for radioimmunotherapy. Hybridoma 14:125–128PubMedCrossRefGoogle Scholar
  6. Chetanneau A, Barbet J, Peltier P et al (1994) Pretargetted imaging of colorectal cancer recurrences using an 111In-labelled bivalent hapten and a bispecific antibody conjugate. Nucl Med Commun 15:972–980PubMedCrossRefGoogle Scholar
  7. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949PubMedCrossRefGoogle Scholar
  8. Gautherot E, Bouhou J, Le Doussal JM et al (1997) Therapy for colon carcinoma xenografts with bispecific antibody-targeted, iodine-131-labeled bivalent hapten. Cancer 80:2618–2623PubMedCrossRefGoogle Scholar
  9. Gautherot E, Le Doussal JM, Bouhou J et al (1998) Delivery of therapeutic doses of radioiodine using bispecific antibody-targeted bivalent haptens. J Nucl Med 39:1937–1943PubMedGoogle Scholar
  10. Gautherot E, Rouvier E, Daniel L et al (2000) Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131 I-labeled bivalent hapten. J Nucl Med 41:480–487PubMedGoogle Scholar
  11. Gestin JF, Loussouarn A, Bardies M et al (2001) Two-step targeting of xenografted colon carcinoma using a bispecific antibody and 188Re-labeled bivalent hapten: biodistribution and dosimetry studies. J Nucl Med 42:146–153PubMedGoogle Scholar
  12. Gold DV, Goldenberg DM, Karacay H et al (2008) A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res 68:4819–4826PubMedCrossRefGoogle Scholar
  13. Goldenberg DM, Preston DF, Primus FJ, Hansen HJ (1974) Photoscan localization of GW-39 tumors in hamsters using radiolabeled anti-carcinoembryonic antigen immunoglobulin G. Cancer Res 34:1–9PubMedGoogle Scholar
  14. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24:823–834PubMedCrossRefGoogle Scholar
  15. Goodwin DA, Meares CF, McTigue M et al (1992) Pretargeted immunoscintigraphy: effect of hapten valency on murine tumor uptake. J Nucl Med 33:2006–2013PubMedGoogle Scholar
  16. Govindan SV, Stein R, Qu Z et al (2004) Preclinical therapy of breast cancer with a radioiodinated humanized anti-EGP-1 monoclonal antibody: advantage of a residualizing iodine radiolabel. Breast Cancer Res Treat 84:173–182PubMedCrossRefGoogle Scholar
  17. Graves SS, Dearstyne E, Lin Y et al (2003) Combination therapy with Pretarget CC49 radioimmunotherapy and gemcitabine prolongs tumor doubling time in a murine xenograft model of colon cancer more effectively than either monotherapy. Clin Cancer Res 9:3712–3721PubMedGoogle Scholar
  18. Griffiths GL, Chang CH, McBride WJ et al (2004) Reagents and methods for PET using bispecific antibody pretargeting and 68Ga-radiolabeled bivalent hapten-peptide-chelate conjugates. J Nucl Med 45:30–39PubMedGoogle Scholar
  19. He J, Wang Y, Dou S et al (2010) Affinity enhancement pretargeting: synthesis and testing of a 99mTc-labeled bivalent MORF. Mol Pharm 7:1118–1124PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hosono M, Hosono MN, Kraeber-Bodere F et al (1998) Biodistribution and dosimetric study in medullary thyroid cancer xenograft using bispecific antibody and iodine-125-labeled bivalent hapten. J Nucl Med 39:1608–1613PubMedGoogle Scholar
  21. Hosono M, Hosono MN, Kraeber-Bodere F et al (1999) Two-step targeting and dosimetry for small cell lung cancer xenograft with anti-NCAM/antihistamine bispecific antibody and radioiodinated bivalent hapten. J Nucl Med 40:1216–1221PubMedGoogle Scholar
  22. Jacobs SA, Swerdlow SH, Kant J et al (2008) Phase II trial of short-course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma. Clin Cancer Res 14:7088–7094PubMedCrossRefGoogle Scholar
  23. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814s–819sPubMedGoogle Scholar
  24. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263PubMedCrossRefGoogle Scholar
  25. Janevik-Ivanovska E, Gautherot E, de Boisferon HM et al (1997) Bivalent hapten-bearing peptides designed for iodine-131 pretargeted radioimmunotherapy. Bioconjug Chem 8:526–533PubMedCrossRefGoogle Scholar
  26. Karacay H, Sharkey RM, McBride WJ, Rossi EA, Chang CH, Goldenberg DM (2011) Optimization of hapten-peptide labeling for bispecific antibody pretargeted ImmunoPET using generator-produced 68Ga. J Nucl Med 52:555–559Google Scholar
  27. Karacay H, McBride WJ, Griffiths GL et al (2000) Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti-[In-DTPA] bispecific antibody construct and a 99mTc-/188Re-labeled peptide. Bioconjug Chem 11:842–854PubMedCrossRefGoogle Scholar
  28. Karacay H, Sharkey RM, McBride WJ et al (2002) Pretargeting for cancer radioimmunotherapy with bispecific antibodies: role of the bispecific antibody’s valency for the tumor target antigen. Bioconjug Chem 13:1054–1070PubMedCrossRefGoogle Scholar
  29. Karacay H, Brard PY, Sharkey RM et al (2005) Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 11:7879–7885PubMedCrossRefGoogle Scholar
  30. Karacay H, Sharkey RM, Gold DV et al (2009) Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10-90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med 50:2008–2016PubMedCrossRefGoogle Scholar
  31. Kraeber-Bodere F, Bardet S, Hoefnagel CA et al (1999a) Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res 5:3190s–3198sPubMedGoogle Scholar
  32. Kraeber-Bodere F, Faivre-Chauvet A, Sai-Maurel C et al (1999b) Toxicity and efficacy of radioimmunotherapy in carcinoembryonic antigen-producing medullary thyroid cancer xenograft: comparison of iodine 131-labeled F(ab’)2 and pretargeted bivalent hapten and evaluation of repeated injections. Clin Cancer Res 5:3183s–3189sPubMedGoogle Scholar
  33. Kraeber-Bodere F, Sai-Maurel C, Campion L et al (2002) Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol Cancer Ther 1:267–274PubMedGoogle Scholar
  34. Kraeber-Bodere F, Rousseau C, Bodet-Milin C et al (2006) Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med 47:247–255PubMedGoogle Scholar
  35. Krishnan A, Nademanee A, Fung HC et al (2008) Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 26:90–95PubMedCrossRefGoogle Scholar
  36. Le Doussal JM, Martin M, Gautherot E, Delaage M, Barbet J (1989) In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med 30:1358–1366PubMedGoogle Scholar
  37. Le Doussal JM, Gruaz-Guyon A, Martin M, Gautherot E, Delaage M, Barbet J (1990) Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res 50:3445–3452PubMedGoogle Scholar
  38. Le Doussal JM, Chetanneau A, Gruaz-Guyon A et al (1993) Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTPA dimer to primary colorectal tumors: pharmacokinetics, biodistribution, scintigraphy and immune response. J Nucl Med 34:1662–1671PubMedGoogle Scholar
  39. Liu G, Dou S, Pretorius PH et al (2010a) Tumor pretargeting in mice using MORF conjugated CC49 antibody and radiolabeled complimentary cMORF effector. Q J Nucl Med Mol Imaging 54:333–340Google Scholar
  40. Liu G, Dou S, Rusckowski M, Greiner D, Hnatowich D (2010b) Preparation of 111In-DTPA morpholino oligomer for low abdominal accumulation. Appl Radiat Isot 68:1709–1714CrossRefGoogle Scholar
  41. McBride WJ, Zanzonico P, Sharkey RM et al (2006) Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med 47:1678–1688PubMedGoogle Scholar
  42. McBride WJ, Sharkey RM, Karacay H et al (2009a) A novel method of 18F radiolabeling for PET. J Nucl Med 50:991–998PubMedCrossRefGoogle Scholar
  43. McBride WJ, Sharkey RM, Karacay H et al (2009b) A novel method of 18F radiolabeling for PET. J Nucl Med 50:991–998PubMedCrossRefGoogle Scholar
  44. McBride WJ, D’Souza CA, Sharkey RM et al (2010) Improved 18F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem 21:1331–1340PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mirallie E, Vuillez JP, Bardet S et al (2005a) High frequency of bone/bone marrow involvement in advanced medullary thyroid cancer. J Clin Endocrinol Metab 90:779–788PubMedCrossRefGoogle Scholar
  46. Mirallie E, Sai-Maurel C, Faivre-Chauvet A et al (2005b) Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody. Eur J Nucl Med Mol Imaging 32:901–909PubMedCrossRefGoogle Scholar
  47. Morandeau L, Benoist E, Loussouarn A et al (2005) Synthesis of new bivalent peptides for applications in the affinity enhancement system. Bioconjug Chem 16:184–193PubMedCrossRefGoogle Scholar
  48. Morel A, Darmon M, Delaage M (1990) Recognition of imidazole and histamine derivatives by monoclonal antibodies. Mol Immunol 27:995–1000PubMedCrossRefGoogle Scholar
  49. Morschhauser F, Radford J, Van Hoof A et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164PubMedCrossRefGoogle Scholar
  50. Pagel JM, Hedin N, Drouet L et al (2008) Eradication of disseminated leukemia in a syngeneic murine leukemia model using pretargeted anti-CD45 radioimmunotherapy. Blood 111:2261–2268PubMedCentralPubMedCrossRefGoogle Scholar
  51. Pagel JM, Orgun N, Hamlin DK et al (2009) A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood 113:4903–4913PubMedCentralPubMedCrossRefGoogle Scholar
  52. Pantelias A, Pagel JM, Hedin N et al (2007) Comparative biodistributions of pretargeted radioimmunoconjugates targeting CD20, CD22, and DR molecules on human B-cell lymphomas. Blood 109:4980–4987PubMedCentralPubMedCrossRefGoogle Scholar
  53. Perrotti AP, Niscola P, Boemi S et al (2009) Long-lasting remission of a relapsed large cell non-hodgkin’s lymphoma by Y90 ibritumomab tiuxetan as salvage therapy. Tumori 95:129–130PubMedGoogle Scholar
  54. Peyrade F, Triby C, Slama B et al (2008) Radioimmunotherapy in relapsed follicular lymphoma previously treated by autologous bone marrow transplant: a report of eight new cases and literature review. Leuk Lymphoma 49:1762–1768PubMedCrossRefGoogle Scholar
  55. Press OW, Corcoran M, Subbiah K et al (2001) A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood 98:2535–2543PubMedCrossRefGoogle Scholar
  56. Primus FJ, Wang RH, Goldenberg DM, Hansen HJ (1973) Localization of human GW-39 tumors in hamsters by radiolabeled heterospecific antibody to carcinoembryonic antigen. Cancer Res 33:2977–2982PubMedGoogle Scholar
  57. Reardan DT, Meares CF, Goodwin DA et al (1985) Antibodies against metal chelates. Nature 316:265–268PubMedCrossRefGoogle Scholar
  58. Rossi EA, Sharkey RM, McBride W et al (2003) Development of new multivalent-bispecific agents for pretargeting tumor localization and therapy. Clin Cancer Res 9:3886S–3896SPubMedGoogle Scholar
  59. Rossi EA, Chang CH, Losman MJ et al (2005) Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells. Clin Cancer Res 11:7122s–7129sPubMedCrossRefGoogle Scholar
  60. Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang CH (2006) Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci U S A 103:6841–6846PubMedCentralPubMedCrossRefGoogle Scholar
  61. Schoffelen R, van der Graaf WT, Franssen G et al (2010a) Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. J Nucl Med 51:1780–1787PubMedCrossRefGoogle Scholar
  62. Schoffelen R, Sharkey RM, Goldenberg DM et al (2010b) Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer Ther 9:1019–1027PubMedCentralPubMedCrossRefGoogle Scholar
  63. Sharkey RM (2005) The direct route may not be the best way to home. J Nucl Med 46:391–394PubMedGoogle Scholar
  64. Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46(Suppl 1):115S–127SPubMedGoogle Scholar
  65. Sharkey RM, Goldenberg DM (2008a) Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 60:1407–1420PubMedCentralPubMedCrossRefGoogle Scholar
  66. Sharkey RM, Goldenberg DM (2008b) Novel radioimmuno pharmaceuticals for cancer imaging and therapy. Curr Opin Investig Drugs 9:1302–1316PubMedGoogle Scholar
  67. Sharkey RM, Karacay H, Richel H et al (2003a) Optimizing bispecific antibody pretargeting for use in radioimmunotherapy. Clin Cancer Res 9:3897S–3913SPubMedGoogle Scholar
  68. Sharkey RM, McBride WJ, Karacay H et al (2003b) A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res 63:354–363PubMedGoogle Scholar
  69. Sharkey RM, Cardillo TM, Rossi EA et al (2005a) Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 11:1250–1255PubMedCrossRefGoogle Scholar
  70. Sharkey RM, Karacay H, Cardillo TM et al (2005b) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109s–7121sPubMedCrossRefGoogle Scholar
  71. Sharkey RM, Karacay H, Chang CH, McBride WJ, Horak ID, Goldenberg DM (2005c) Improved therapy of non-Hodgkin’s lymphoma xenografts using radionuclides pretargeted with a new anti-CD20 bispecific antibody. Leukemia 19:1064–1069PubMedCrossRefGoogle Scholar
  72. Sharkey RM, Karacay H, Litwin S et al (2008a) Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res 68:5282–5290PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sharkey RM, Karacay H, Vallabhajosula S et al (2008b) Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology 246:497–507PubMedCrossRefGoogle Scholar
  74. Sharkey RM, Karacay H, Johnson CR et al (2009) Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 50:444–453PubMedCrossRefGoogle Scholar
  75. Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM (2010) Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 40:190–203PubMedCentralPubMedCrossRefGoogle Scholar
  76. Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, Cardillo TM, McBride WJ, Chang C-H, Boerman OC, and Goldenberg DM. A new tri-Fab bispecific antibody for pretargeting Trop-2 expressing epithelial cancers. J Nucl Med (in press)Google Scholar
  77. Stein R, Govindan SV, Mattes MJ et al (1999) Targeting human cancer xenografts with monoclonal antibodies labeled using radioiodinated, diethylenetriaminepentaacetic acid-appended peptides. Clin Cancer Res 5:3079s–3087sPubMedGoogle Scholar
  78. Stickney DR, Anderson LD, Slater JB et al (1991) Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res 51:6650–6655PubMedGoogle Scholar
  79. van Schaijk FG, Oosterwijk E, Molkenboer-Kuenen JD et al (2005) Pretargeting with bispecific anti-renal cell carcinoma x anti-DTPA(In) antibody in 3 RCC models. J Nucl Med 46:495–501PubMedGoogle Scholar
  80. Winter JN, Inwards DJ, Spies S et al (2009) Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 27:1653–1659PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zinzani PL, Tani M, Pulsoni A et al (2008a) Fludarabine and mitoxantrone followed by yttrium-90 ibritumomab tiuxetan in previously untreated patients with follicular non-Hodgkin lymphoma trial: a phase II non-randomised trial (FLUMIZ). Lancet Oncol 9:352–358CrossRefGoogle Scholar
  82. Zinzani PL, Tani M, Fanti S et al (2008b) A phase II trial of CHOP chemotherapy followed by yttrium 90 ibritumomab tiuxetan (Zevalin) for previously untreated elderly diffuse large B-cell lymphoma patients. Ann Oncol 19:769–773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Garden State Cancer CenterCenter for Molecular Medicine and ImmunologyNew JerseyUSA

Personalised recommendations