Treatment of Progressive Dedifferentiated and Medullary Thyroid Cancer with Radiolabeled Somatostatin Analogs

  • Rebecca A. Dumont
  • Jan Mueller-Brand
  • Martin A. Walter
Part of the Medical Radiology book series (MEDRAD)


Radiolabeled receptor-binding peptides have become an important class of radiopharmaceuticals in nuclear oncology. The most prominent examples of successful peptide-based radiotherapy are radiolabeled somatostatin analogs for imaging and treatment of patients with progressive neuroendocrine tumors. Immunohistological studies demonstrating somatostatin receptor expression in differentiated and medullary thyroid cancer have provided the rationale for the use of radiolabeled somatostatin analogs in diagnosis and treatment of thyroid cancers. Accordingly, 90Yttrium-, 177Lutetium-, and 111Indium-labeled somatostatin analogs have been evaluated for treatment of patients with iodine-refractory differentiated and medullary thyroid cancer. In differentiated thyroid cancer, the reported rates of disease control, defined as responses plus stable disease, vary between 20 and 56 %. Studies on the follow-up after treatment revealed a time to progression between 9 and 43 months. In medullary thyroid cancer, the reported rates of disease control vary between 42 and 67 %. In both entities, responders have prolonged survival compared with nonresponders.


Thyroid Cancer Medullary Thyroid Carcinoma Medullary Thyroid Differentiate Thyroid Cancer Medullary Thyroid Cancer 


  1. Ain KB, Taylor KD et al (1997) Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines. J Clin Endocrinol Metab 82(6):1857–1862PubMedGoogle Scholar
  2. Ball DW, Baylin SB et al. (2000). Medullary thyroid carcinoma. In: Braverman LE, Utiger RE (eds.) Lippincott Williams & Wilkins, Philadelphia, pp 930–943Google Scholar
  3. Baudin E, Lumbroso J et al (1996a) Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med 37(6):912–916PubMedGoogle Scholar
  4. Baudin E, Schlumberger M (2007) New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol 8(2):148–156PubMedCrossRefGoogle Scholar
  5. Baudin E, Schlumberger M et al (1996b) Octreotide scintigraphy in patients with differentiated thyroid carcinoma: contribution for patients with negative radioiodine scan. J Clin Endocrinol Metab 81(7):2541–2544PubMedGoogle Scholar
  6. Behe M, Behr TM (2002) Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 66(6):399–418PubMedCrossRefGoogle Scholar
  7. Behr TM, Becker W (1999) Metabolic and receptor imaging of metastatic medullary thyroid cancer: does anti-CEA and somatostatin-receptor scintigraphy allow for prognostic predictions? Eur J Nucl Med 26(1):70–71PubMedGoogle Scholar
  8. Behr TM, Gratz S et al (1997) Anti-carcinoembryonic antigen antibodies versus somatostatin analogs in the detection of metastatic medullary thyroid carcinoma: are carcinoembryonic antigen and somatostatin receptor expression prognostic factors? Cancer 80(12 Suppl):2436–2457PubMedCrossRefGoogle Scholar
  9. Behr TM, Jenner N et al (1999) Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med 40(6):1029–1044PubMedGoogle Scholar
  10. Berna L, Chico A et al (1998) Use of somatostatin analogue scintigraphy in the localization of recurrent medullary thyroid carcinoma. Eur J Nucl Med 25(11):1482–1488PubMedCrossRefGoogle Scholar
  11. Bodei L, Cremonesi M et al (2004a) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31(7):1038–1046PubMedGoogle Scholar
  12. Bodei L, Handkiewicz-Junak D et al (2004b) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19(1):65–71PubMedCrossRefGoogle Scholar
  13. Buscombe JR, Caplin ME et al (2003) Long-term efficacy of high-activity 111in-pentetreotide therapy in patients with disseminated neuroendocrine tumors. J Nucl Med 44(1):1–6PubMedGoogle Scholar
  14. Busnardo B, Girelli ME et al (1984) Nonparallel patterns of calcitonin and carcinoembryonic antigen levels in the follow-up of medullary thyroid carcinoma. Cancer 53(2):278–285PubMedCrossRefGoogle Scholar
  15. Caplan RH, Abellera RM et al (1994) Hurthle cell neoplasms of the thyroid gland: reassessment of functional capacity. Thyroid 4(3):243–248PubMedCrossRefGoogle Scholar
  16. Chatal JF, Campion L et al (2006) Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French endocrine tumor group. J Clin Oncol 24(11):1705–1711PubMedCrossRefGoogle Scholar
  17. Chinol M, Bodei L et al (2002) Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med 32(2):141–147PubMedCrossRefGoogle Scholar
  18. Christian JA, Cook GJ et al (2003) Indium-111-labelled octreotide scintigraphy in the diagnosis and management of non-iodine avid metastatic carcinoma of the thyroid. Br J Cancer 89(2):258–261PubMedCentralPubMedCrossRefGoogle Scholar
  19. Cooper DS, Schneyer CR (1990) Follicular and Hurthle cell carcinoma of the thyroid. Endocrinol Metab Clin North Am 19(3):577–591PubMedGoogle Scholar
  20. de Jong M, Breeman WA et al (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S–17SPubMedGoogle Scholar
  21. Druckenthaner M, Schwarzer C et al (2007) Evidence for Somatostatin receptor 2 in thyroid tissue. Regul Pept 138(1):32–39PubMedCrossRefGoogle Scholar
  22. Forssell-Aronsson EB, Nilsson O et al (2000) 111In-DTPA-D-Phe1-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J Nucl Med 41(4):636–642PubMedGoogle Scholar
  23. Frank-Raue K, Bihl H et al (1995) Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol (Oxf) 42(1):31–37CrossRefGoogle Scholar
  24. Froberg AC, de Jong M et al (2009) Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 36(8):1265–1272PubMedCentralPubMedGoogle Scholar
  25. Gabriel M, Froehlich F et al (2004) 99mTc-EDDA/HYNIC-TOC and (18)F-FDG in thyroid cancer patients with negative (131)I whole-body scans. Eur J Nucl Med Mol Imaging 31(3):330–341PubMedGoogle Scholar
  26. Garin E, Devillers A et al (1998) Use of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients without detectable iodine uptake. Eur J Nucl Med 25(7):687–694PubMedCrossRefGoogle Scholar
  27. Giammarile F, Houzard C et al (2004) Diagnostic management of suspected metastatic thyroid carcinoma: clinical value of octreotide scintigraphy in patients with negative high-dose radioiodine scans. Eur J Endocrinol 150(3):277–283PubMedCrossRefGoogle Scholar
  28. Gorges R, Kahaly G et al (2001) Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 11(7):647–659PubMedCrossRefGoogle Scholar
  29. Gotthardt M, Behe MP et al (2006) Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 33(11):1273–1279PubMedGoogle Scholar
  30. Haslinghuis LM, Krenning EP et al (2001) Somatostatin receptor scintigraphy in the follow-up of patients with differentiated thyroid cancer. J Endocrinol Invest 24(6):415–422PubMedCrossRefGoogle Scholar
  31. Hundahl SA, Fleming ID et al (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see comments]. Cancer 83(12):2638–2648PubMedCrossRefGoogle Scholar
  32. Imhof A, Brunner P et al (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29(17):2416–2423PubMedCrossRefGoogle Scholar
  33. Iten F, Muller B et al (2009) [(90)Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer: long-term results of a phase 2 clinical trial. Cancer 115(10):2052–2062PubMedCrossRefGoogle Scholar
  34. Iten F, Muller B et al (2007) Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 13(22 Pt 1):6696–6702PubMedCrossRefGoogle Scholar
  35. John M, Meyerhof W et al (1996) Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut 38(1):33–39PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kaltsas G, Rockall A et al (2004) Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol 151(1):15–27PubMedCrossRefGoogle Scholar
  37. Kimura N, Pilichowska M et al (1999) Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors. Clin Cancer Res 5(11):3483–3487PubMedGoogle Scholar
  38. Krenning EP, Bakker WH et al (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1(8632):242–244PubMedCrossRefGoogle Scholar
  39. Krenning EP, Bakker WH et al (1992a) Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 33(5):652–658PubMedGoogle Scholar
  40. Krenning EP, de Jong M et al (1999) Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol 10(Suppl 2):S23–S29PubMedCrossRefGoogle Scholar
  41. Krenning EP, Kwekkeboom DJ et al (1992b) 111In-octreotide scintigraphy in oncology. Metabolism 41(9 Suppl 2):83–86PubMedCrossRefGoogle Scholar
  42. Kurtaran A, Leimer M et al (1996) Combined use of 111In-DTPA-D-Phe-1-octreotide (OCT) and 123I-vasoactive intestinal peptide (VIP) in the localization diagnosis of medullary thyroid carcinoma (MTC). Nucl Med Biol 23(4):503–507PubMedCrossRefGoogle Scholar
  43. Kwekkeboom DJ, Bakker WH et al (2000) Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 27(9):1312–1317PubMedCrossRefGoogle Scholar
  44. Kwekkeboom DJ, de Herder WW et al (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26(13):2124–2130PubMedCrossRefGoogle Scholar
  45. Kwekkeboom DJ, Reubi JC et al (1993) In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab 76(6):1413–1417PubMedGoogle Scholar
  46. Kwekkeboom DJ, Teunissen JJ et al (2005) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23(12):2754–2762PubMedCrossRefGoogle Scholar
  47. Leboulleux S, Baudin E et al (2004) Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 61(3):299–310CrossRefGoogle Scholar
  48. Maxon HR 3rd, Smith HS (1990) Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 19(3):685–718PubMedGoogle Scholar
  49. Nock BA, Maina T et al (2005) CCK-2/gastrin receptor-targeted tumor imaging with (99m)Tc-labeled minigastrin analogs. J Nucl Med 46(10):1727–1736PubMedGoogle Scholar
  50. O’Doherty MJ, Coakley AJ (1998) Drug therapy alternatives in the treatment of thyroid cancer. Drugs 55(6):801–812PubMedCrossRefGoogle Scholar
  51. O’Donoghue JA, Bardies M et al (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36(10):1902–1909PubMedGoogle Scholar
  52. Otte A, Mueller-Brand J et al (1998) Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 351(9100):417–418PubMedCrossRefGoogle Scholar
  53. Papotti M, Kumar U et al (2001) Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol (Oxf) 54(5):641–649CrossRefGoogle Scholar
  54. Postema PT, De Herder WW et al (1996) Somatostatin receptor scintigraphy in non-medullary thyroid cancer. Digestion 57(Suppl 1):36–37PubMedCrossRefGoogle Scholar
  55. Reubi JC, Chayvialle JA et al (1991) Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. Lab Invest 64(4):567–573PubMedGoogle Scholar
  56. Reubi JC, Macke HR et al (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46(Suppl 1):67S–75SPubMedGoogle Scholar
  57. Reubi JC, Maurer R et al (1987) Somatostatin receptors in human endocrine tumors. Cancer Res 47(2):551–558PubMedGoogle Scholar
  58. Reubi JC, Schaer JC et al (1997) Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med 70(5–6):471–479PubMedCentralPubMedGoogle Scholar
  59. Reubi JC, Schaer JC et al (1994) Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 54(13):3455–3459PubMedGoogle Scholar
  60. Reubi JC, Schar JC et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27(3):273–282PubMedCrossRefGoogle Scholar
  61. Reubi JC, Waser B (1996) Unexpected high incidence of cholecystokinin-B/gastrin receptors in human medullary thyroid carcinomas. Int J Cancer 67(5):644–647PubMedCrossRefGoogle Scholar
  62. Reubi JC, Waser B et al (1990) Somatostatin receptor incidence and distribution in breast cancer using receptor autoradiography: relationship to EGF receptors. Int J Cancer 46(3):416–420PubMedCrossRefGoogle Scholar
  63. Reubi JC, Waser B et al (2001) Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28(7):836–846PubMedCrossRefGoogle Scholar
  64. Santini F, Bottici V et al (2002) Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer. J Clin Endocrinol Metab 87(9):4160–4165PubMedCrossRefGoogle Scholar
  65. Schlumberger M, Gardet P et al (1991) External radiotherapy and chemotherapy in MTC patients. In: Calmettes C, Guliana JM (eds.) Colloque INSERM/John Libbey, Eurotext Ltd, Paris, France pp. 211, 213–220Google Scholar
  66. Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338(5):297–306PubMedCrossRefGoogle Scholar
  67. Sherman SI (2003) Thyroid carcinoma. Lancet 361(9356):501–511PubMedCrossRefGoogle Scholar
  68. Shimaoka K, Schoenfeld DA et al (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56(9):2155–2160PubMedCrossRefGoogle Scholar
  69. Sisson JC, Giordano TJ et al (1996) 131-I treatment of micronodular pulmonary metastases from papillary thyroid carcinoma. Cancer 78(10):2184–2192PubMedCrossRefGoogle Scholar
  70. Smith MC, Liu J et al (2000) OctreoTher: ongoing early clinical development of a somatostatin-receptor-targeted radionuclide antineoplastic therapy. Digestion 62(Suppl 1):69–72PubMedCrossRefGoogle Scholar
  71. Stokkel MP, Verkooijen RB et al (2004a) Six month follow-up after 111In-DTPA-octreotide therapy in patients with progressive radioiodine non-responsive thyroid cancer: a pilot study. Nucl Med Commun 25(7):683–690PubMedCrossRefGoogle Scholar
  72. Stokkel MP, Verkooijen RB et al (2004b) Indium-111 octreotide scintigraphy for the detection of non-functioning metastases from differentiated thyroid cancer: diagnostic and prognostic value. Eur J Nucl Med Mol Imaging 31(7):950–957PubMedGoogle Scholar
  73. Tenenbaum F, Lumbroso J et al (1995) Radiolabeled somatostatin analog scintigraphy in differentiated thyroid carcinoma. J Nucl Med 36(5):807–810PubMedGoogle Scholar
  74. Teunissen JJ, Krenning EP et al (2009) Effects of therapy with [177Lu-DOTA 0, Tyr 3]octreotate on endocrine function. Eur J Nucl Med Mol Imaging 36(11):1758–1766PubMedCentralPubMedGoogle Scholar
  75. Teunissen JJ, Kwekkeboom DJ et al (2005) Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med 46(Suppl 1):107S–114SPubMedGoogle Scholar
  76. Valkema R, De Jong M et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32(2):110–122PubMedCrossRefGoogle Scholar
  77. Valli N, Catargi B et al (1999) Evaluation of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients with negative radioiodine scintigraphy. Thyroid 9(6):583–589PubMedCrossRefGoogle Scholar
  78. Villard L, Romer A et al (2012) Cohort study of somatostatin-based radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol 30(10):1100–1106Google Scholar
  79. Vini L, Harmer C (2002) Management of thyroid cancer. Lancet Oncol 3(7):407–414PubMedCrossRefGoogle Scholar
  80. Virgolini I, Britton K et al (2002) In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med 32(2):148–155PubMedCrossRefGoogle Scholar
  81. Vitale G, Caraglia M et al (2001) Current approaches and perspectives in the therapy of medullary thyroid carcinoma. Cancer 91(9):1797–1808PubMedCrossRefGoogle Scholar
  82. Waldherr C, Pless M et al (2001a) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12(7):941–945PubMedCrossRefGoogle Scholar
  83. Waldherr C, Pless M et al (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43(5):610–616PubMedGoogle Scholar
  84. Waldherr C, Schumacher T et al (2001b) Radiopeptide transmitted internal irradiation of non-iodophil thyroid cancer and conventionally untreatable medullary thyroid cancer using. Nucl Med Commun 22(6):673–678PubMedCrossRefGoogle Scholar
  85. Wild D, Schmitt JS et al (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30(10):1338–1347PubMedGoogle Scholar
  86. Williams SD, Birch R et al (1986) Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep 70(3):405–407PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rebecca A. Dumont
    • 1
  • Jan Mueller-Brand
    • 2
  • Martin A. Walter
    • 2
  1. 1.Department of Nuclear MedicineUniversity Clinic FreiburgFreiburgGermany
  2. 2.Institute of Nuclear MedicineUniversity Hospital BaselBaselSwitzerland

Personalised recommendations