Selective High Affinity Ligands: A New Class of Targeting Agents for Cancer Imaging and Therapy

  • Rod Balhorn
  • Monique Cosman Balhorn
Part of the Medical Radiology book series (MEDRAD)


Selective High Affinity Ligands (SHALs) are small molecule protein targeting agents that can be readily created using a combination of computational and experimental technologies. SHALs, which consist of two or three small molecule recognition elements linked together using lysine and miniPEGs, are designed to bind to a series of unique, neighboring cavities on the protein’s surface in a manner that mimics the process of molecular recognition employed by antibodies and other biomolecules. SHAL synthesis is highly modular. Individual recognition elements and linker lengths can be easily changed to improve binding or selectivity, effectors can be added to provide multiple mechanisms of toxicity, and tags can be attached to enable use as companion diagnostics, and imaging agents. Using this approach, a series of SHALs have been developed as therapeutics, diagnostics and imaging agents for B-cell lymphomas and related malignancies that overexpress the cell surface antigen HLA-DR10. Protein-, cell-, and tissue-based assays have confirmed that the molecules bind selectively and with high affinity (nM to pM Kd) to cells and tumor biopsy samples overexpressing HLA-DR10. In vivo, the SHALs have short blood and body clearance times as expected for small molecules and tissue biodistributions that are dictated by the types of compounds used as recognition elements. A number of SHALs have been shown to exhibit tumor selective cytotoxicity and show promise as imaging agents for non-Hodgkin’s lymphoma and other B-cell-derived malignancies.


Nuclear Magnetic Resonance High Performance Liquid Chromatography Imaging Agent Clearance Time Electrospray Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alduaij W, Illidge TM (2009) Radioimmunotherapy: strategies for the future in indolent and aggressive lymphoma. Curr Oncol Rep 11:363–370PubMedCrossRefGoogle Scholar
  2. Balhorn R, Hok S, Burke PA, Lightstone FC, Cosman M, Zemla A, Mirick G, Perkins J, Natarajan A, Corzett M, DeNardo SJ, Albrecht H, Gregg JP, DeNardo GL (2007) Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res 13:5621s–5628sPubMedCrossRefGoogle Scholar
  3. Balhorn R, Hok S, DeNardo S, Natarajan A, Mirick G, Corzett M, Denardo G (2009) Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells. Mol Cancer 8:25PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bischof Delaloye A, Delaloye B (1995) Tumor imaging with monoclonal antibodies. Semin Nucl Med 25:144–164PubMedCrossRefGoogle Scholar
  5. Bolin DR, Swain AL, Sarabu R, Berthel SJ, Gillespie P, Huby NJ, Makofske R, Orzechowski L, Perrotta A, Toth K, Cooper JP, Jiang N, Falcioni F, Campbell R, Cox D, Gaizband D, Belunis CJ, Vidovic D, Ito K, Crowther R, Kammlott U, Zhang X, Palermo R, Weber D, Guenot J, Nagy Z, Olson GL (2000) Peptide and peptide mimetic inhibitors of antigen presentation by HLA-DR class II MHC molecules. Design, structure-activity relationships, and X-ray crystal structures. J Med Chem 43:2135–2148PubMedCrossRefGoogle Scholar
  6. Bouchelouche K, Capala J, Oehr P (2009) Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer. Curr Opin Oncol 21:469–474PubMedCentralPubMedCrossRefGoogle Scholar
  7. Buscombe J, Hirji H, Witney-Smith C (2008) Nuclear medicine in the management of thyroid disease. Expert Rev Anticancer Ther 8:1425–1431PubMedCrossRefGoogle Scholar
  8. Carlson CB, Mowery P, Owen RM, Dykhuizen EC, Kiessling LL (2007) Selective tumor cell targeting using low-affinity, multivalent interactions. ACS Chem Biol 2:119–127PubMedCrossRefGoogle Scholar
  9. Cosman M, Lightstone FC, Krishnan VV, Zeller L, Prieto MC, Roe DC, Balhorn R (2002) Identification of novel small molecules that bind to two different sites on the surface of tetanus toxin C fragment. Chem Res Toxicol 15:1218–1228PubMedCrossRefGoogle Scholar
  10. Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359PubMedCrossRefGoogle Scholar
  11. David KA, Milowsky MI, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Nanus DM, Bander NH (2006) Clinical utility of radiolabeled monoclonal antibodies in prostate cancer. Clin Genitourin Cancer 4:249–256PubMedGoogle Scholar
  12. de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14:630–646PubMedCrossRefGoogle Scholar
  13. Dechant M, Bruenke J, Valerius T (2003) HLA class II antibodies in the treatment of hematologic malignancies. Semin Oncol 30:465–475PubMedCrossRefGoogle Scholar
  14. DeNardo SJ, Denardo GL (2006) Targeted radionuclide therapy for solid tumors: an overview. Int J Radiat Oncol Biol Phys 66:S89–S95PubMedCrossRefGoogle Scholar
  15. DeNardo GL, Hok S, Van Natarajan A, Cosman M, DeNardo SJ, Lightstone FC, Mirick GR, Yuan A, Perkins J, Sysko VV, Lehmann J, Balhorn RL (2007a) Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol 31:729–740PubMedGoogle Scholar
  16. DeNardo GL, Natarajan A, Hok S, Perkins J, Cosman M, DeNardo SJ, Lightstone FC, Mirick GR, Miers LA, Balhorn RL (2007b) Pharmacokinetic characterization in xenografted mice of a series of first-generation mimics for HLA-DR antibody, Lym-1, as carrier molecules to image and treat lymphoma. J Nucl Med 48:1338–1347PubMedCrossRefGoogle Scholar
  17. DeNardo GL, Natarajan A, Hok S, Mirick G, DeNardo SJ, Corzett M, Sysko V, Lehmann J, Beckett L, Balhorn R (2008) Nanomolecular HLA-DR10 antibody mimics: a potent system for molecular targeted therapy and imaging. Cancer Biother Radiopharm 23:783–795PubMedCentralPubMedCrossRefGoogle Scholar
  18. DeNardo GL, Mirick GR, Hok S, DeNardo SJ, Beckett LA, Adamson GN, Balhorn RL (2009) Molecular specific and cell selective cytotoxicity induced by a novel synthetic HLA-DR antibody mimic for lymphoma and leukemia. Int J Oncol 34:511–516PubMedGoogle Scholar
  19. Dietlein M, Pels H, Schulz H, Staak O, Borchmann P, Schomacker K, Fischer T, Eschner W, Pogge von Strandmann E, Schicha H, Engert A, Schnell R (2005) Imaging of central nervous system lymphomas with iodine-123 labeled rituximab. Eur J Haematol 74:348–352PubMedCrossRefGoogle Scholar
  20. Fan E, Merritt EA, Verlinde CL, Hol WG (2000a) AB(5) toxins: structures and inhibitor design. Curr Opin Struct Biol 10:680–686PubMedCrossRefGoogle Scholar
  21. Fan E, Zhang Z, Minke WE, Hou Z, Verlinde CLMJ, Hol WGJ (2000b) High-affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design. J Am Chem Soc 122:2663–2664CrossRefGoogle Scholar
  22. Gallop MA, Barrett RW, Dower WJ, Fodor SP, Gordon EM (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251PubMedCrossRefGoogle Scholar
  23. Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378:457–462PubMedCrossRefGoogle Scholar
  24. Gmeiner Stopar T, Fettich J, Zver S, Mlinaric-Rascan I, Hojker S, Socan A, Peitl PK, Mather S (2008) 99mTc-labelled rituximab, a new non-Hodgkin’s lymphoma imaging agent: first clinical experience. Nucl Med Commun 29:1059–1065PubMedCrossRefGoogle Scholar
  25. Goldenberg DM (2002) Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43:693–713PubMedGoogle Scholar
  26. Gounarides JS, Chen A, Shapiro MJ (1999) Nuclear magnetic resonance chromatography: applications of pulse field gradient diffusion NMR to mixture analysis and ligand-receptor interactions. J Chromatogr B Biomed Sci Appl 725:79–90PubMedCrossRefGoogle Scholar
  27. Griggs WS, Divgi C (2008) Radioiodine imaging and treatment in thyroid disorders. Neuroimaging Clin N Am 18:505–515, viiiPubMedCrossRefGoogle Scholar
  28. Gronenborn AM, Clore GM (1982) Conformation of NAD+ bound to yeast and horse liver alcohol dehydrogenease in solution. The use of the proton–proton transferred nuclear overhauser enhancement. J Mol Biol 157:155–160PubMedCrossRefGoogle Scholar
  29. Gussio R, Pattabiraman N, Zaharevitz DW, Kellogg GE, Topol IA, Rice WG, Schaeffer CA, Erickson JW, Burt SK (1996) All-atom models for the non-nucleoside binding site of HIV-1 reverse transcriptase complexed with inhibitors: a 3D QSAR approach. J Med Chem 39:1645–1650PubMedCrossRefGoogle Scholar
  30. Hagen GA, Elliott WJ (1973) Transport of thyroid hormones in serum and cerebrospinal fluid. J Clin Endocrinol Metab 37:415–422PubMedCrossRefGoogle Scholar
  31. Hajduk PJ, Meadows RP, Fesik SW (1997) Discovering high-affinity ligands for proteins. Science 278(497):499Google Scholar
  32. Hajduk PJ, Dinges J, Schkeryantz JM, Janowick D, Kaminski M, Tufano M, Augeri DJ, Petros A, Nienaber V, Zhong P, Hammond R, Coen M, Beutel B, Katz L, Fesik SW (1999) Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J Med Chem 42:3852–3859PubMedCrossRefGoogle Scholar
  33. Hajduk PJ, Boyd S, Nettesheim D, Nienaber V, Severin J, Smith R, Davidson D, Rockway T, Fesik SW (2000a) Identification of novel inhibitors of urokinase via NMR-based screening. J Med Chem 43:3862–3866PubMedCrossRefGoogle Scholar
  34. Hajduk PJ, Gomtsyan A, Didomenico S, Cowart M, Bayburt EK, Solomon L, Severin J, Smith R, Walter K, Holzman TF, Stewart A, McGaraughty S, Jarvis MF, Kowaluk EA, Fesik SW (2000b) Design of adenosine kinase inhibitors from the NMR-based screening of fragments. J Med Chem 43:4781–4786PubMedCrossRefGoogle Scholar
  35. Hajduk PJ, Mendoza R, Petros AM, Huth JR, Bures M, Fesik SW, Martin YC (2003) Ligand binding to domain-3 of human serum albumin: a chemometric analysis. J Comput Aided Mol Des 17:93–102PubMedCrossRefGoogle Scholar
  36. Hok S, Natarajan A, Balhorn R, DeNardo SJ, DeNardo GL, Perkins J (2007) Synthesis and radiolabeling of selective high-affinity ligands designed to target non-Hodgkin’s lymphoma and leukemia. Bioconjug Chem 18:912–921PubMedCrossRefGoogle Scholar
  37. Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44:4615–4627PubMedCrossRefGoogle Scholar
  38. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275–1281PubMedCrossRefGoogle Scholar
  39. Huth JR, Park C, Petros AM, Kunzer AR, Wendt MD, Wang X, Lynch CL, Mack JC, Swift KM, Judge RA, Chen J, Richardson PL, Jin S, Tahir SK, Matayoshi ED, Dorwin SA, Ladror US, Severin JM, Walter KA, Bartley DM, Fesik SW, Elmore SW, Hajduk PJ (2007) Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 70:1–12PubMedCrossRefGoogle Scholar
  40. Janda KD, Lo CH, Li T, Barbas CF 3rd, Wirsching P, Lerner RA (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci U S A 91:2532–2536PubMedCentralPubMedCrossRefGoogle Scholar
  41. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI, Stauffacher C, Strominger JL, Wiley DC (1994) Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711–718PubMedCrossRefGoogle Scholar
  42. Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191PubMedCrossRefGoogle Scholar
  43. Jun JY, Manni A (2008) Medical management of persistent or recurrent differentiated thyroid carcinoma. Otolaryngol Clin North Am 41:1241–1260 xi–xiiPubMedCrossRefGoogle Scholar
  44. Khaw BA, Bailes JS, Schneider SL, Lancaster J, Powers J, Strauss HW, Lasher JC, McGuire WL (1988) Human breast tumor imaging using 111 In labeled monoclonal antibody: athymic mouse model. Eur J Nucl Med 14:362–366PubMedGoogle Scholar
  45. Koppe MJ, Bleichrodt RP, Oyen WJ, Boerman OC (2005) Radioimmunotherapy and colorectal cancer. Br J Surg 92:264–276PubMedCrossRefGoogle Scholar
  46. Kramer RH, Karpen JW (1998) Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395:710–713PubMedCrossRefGoogle Scholar
  47. Li JF, Ouyang T, Wang XJ, Wang TF, Xie YT, Fan ZQ, Lin BH, Yang Z, Lin BY (2006) Preliminary study of new imaging agent, 99mTc-Rituximab, for sentinel lymph node biopsy of primary breast cancer. Zhonghua Wai Ke Za Zhi 44:600–602PubMedGoogle Scholar
  48. Li B, Zhao L, Guo H, Wang C, Zhang X, Wu L, Chen L, Tong Q, Qian W, Wang H, Guo Y (2009) Characterization of a rituximab variant with potent antitumor activity against rituximab-resistant B-cell lymphoma. Blood 114:5007–5015PubMedCrossRefGoogle Scholar
  49. Liebeschuetz JW, Jones SD, Morgan PJ, Murray CW, Rimmer AD, Roscoe JM, Waszkowycz B, Welsh PM, Wylie WA, Young SC, Martin H, Mahler J, Brady L, Wilkinson K (2002) PRO_SELECT: combining structure-based drug design and array-based chemistry for rapid lead discovery. 2. The development of a series of highly potent and selective factor Xa inhibitors. J Med Chem 45:1221–1232PubMedCrossRefGoogle Scholar
  50. Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23PubMedCrossRefGoogle Scholar
  51. Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc Natl Acad Sci U S A 97:2419–2424PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794CrossRefGoogle Scholar
  53. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788CrossRefGoogle Scholar
  54. Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, Warrington AE, Rodriguez M, Oh SH (2009) Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J 4:1542–1558PubMedCentralPubMedCrossRefGoogle Scholar
  55. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  56. Medek A, Hajduk PJ, Mack J, Fesik SW (2000) The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J Am Chem Soc 122:1241–1242CrossRefGoogle Scholar
  57. Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF (2007) Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 13:5643s–5645sPubMedCrossRefGoogle Scholar
  58. Meyer B, Weimar T, Peters T (1997) Screening mixtures for biological activity by NMR. Eur J Biochem 246:705–709PubMedCrossRefGoogle Scholar
  59. Nelson KL, Runge VM (1995) Basic principles of MR contrast. Top Magn Reson Imaging 7:124–136PubMedGoogle Scholar
  60. O’Connor SD, Summers RM (2007) Revisiting oral barium sulfate contrast agents. Acad Radiol 14:72–80PubMedCrossRefGoogle Scholar
  61. Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26:1774–1777PubMedCrossRefGoogle Scholar
  62. Otto WH, Larive CK (2001) Improved spin-echo-edited NMR diffusion measurements. J Magn Reson 153:273–276PubMedCrossRefGoogle Scholar
  63. Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK (1998) Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J Mass Spectrom 33:911–920PubMedCrossRefGoogle Scholar
  64. Ramstrom O, Lehn JM (2000) In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A. ChemBioChem 1:41–48PubMedCrossRefGoogle Scholar
  65. Roberts C (2000) Applications of NMR in drug discovery. Drug Discov Today 5:230–240PubMedCrossRefGoogle Scholar
  66. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566PubMedCrossRefGoogle Scholar
  67. Sharkey RM, Goldenberg DM (2008) Novel radioimmunopharmaceuticals for cancer imaging and therapy. Curr Opin Investig Drugs 9:1302–1316PubMedGoogle Scholar
  68. Shields SJ, Oyeyemi O, Lightstone FC, Balhorn R (2003) Mass spectrometry and non-covalent protein-ligand complexes: confirmation of binding sites and changes in tertiary structure. J Am Soc Mass Spectrom 14:460–470PubMedCrossRefGoogle Scholar
  69. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534PubMedCrossRefGoogle Scholar
  70. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188:1511–1520PubMedCentralPubMedCrossRefGoogle Scholar
  71. Speck U (2008) Contrast agents: X-ray contrast agents and molecular imaging—a contradiction? Handb Exp Pharmacol 185: 167–175Google Scholar
  72. Swann MJ, Peel LL, Carrington S, Freeman NJ (2004) Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal Biochem 329:190–198PubMedCrossRefGoogle Scholar
  73. Szczepankiewicz BG, Liu G, Hajduk PJ, Abad-Zapatero C, Pei Z, Xin Z, Lubben TH, Trevillyan JM, Stashko MA, Ballaron SJ, Liang H, Huang F, Hutchins CW, Fesik SW, Jirousek MR (2003) Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J Am Chem Soc 125:4087–4096PubMedCrossRefGoogle Scholar
  74. Tran THL (2009) Pharmaceutical development and clinical application of radiolabeled rituximabGoogle Scholar
  75. Tuscano JM, O’Donnell RT, Miers LA, Kroger LA, Kukis DL, Lamborn KR, Tedder TF, DeNardo GL (2003) Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641–3647PubMedCrossRefGoogle Scholar
  76. Veenstra TD (1999) Electrospray ionization mass spectrometry in the study of biomolecular non-covalent interactions. Biophys Chem 79:63–79PubMedCrossRefGoogle Scholar
  77. Wigger M, Eyler JR, Benner SA, Li W, Marshall AG (2002) Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. J Am Soc Mass Spectrom 13:1162–1169PubMedCrossRefGoogle Scholar
  78. Wu QY, Gao JM, Joseph-McCarthy D, Sigal GB, Bruce JE, Whitesides GM, Smith RD (1997) Carbonic anhydraseinhibitor binding: From solution to the gas phase. J Am Chem Soc 119:1157–1158CrossRefGoogle Scholar
  79. Zhang N, Khawli LA, Hu P, Epstein AL (2007) Lym-1-induced apoptosis of non-Hodgkin’s lymphomas produces regression of transplanted tumors. Cancer Biother Radiopharm 22:342–356PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of Chemistry and BiochemistryCalifornia State University East BayHaywardUSA

Personalised recommendations