Advertisement

Antibodies for Nuclear Medicine Therapy

  • David M. Goldenberg
  • Robert M. Sharkey
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Immunoglobulin G (IgG) is a unique molecule with the capability of exquisite binding specificity. Its ability to bind antigens is an integral component of our immune system for clearing foreign cells from the body. In some instances, the mere binding of an IgG to the cell surface can elicit signals that trigger cell death. Although unconjugated antibodies have had an increasing role in oncology and autoimmune disorders over the past 10-15 years, over the past 50+ years, IgG has primarily been used target other compounds to tumors with the goal to illuminate tumors from surrounding normal tissues through imaging technologies, or for therapy using a variety of cytotoxic agents, such as radionuclides, drugs, toxins, or other biological agents. Radioconjugates are unique from the perspective that they allow both better detection and they also can deliver a cytotoxic dose of radiation. The cytotoxic activity can be manifested across many cell layers with strong beta-emitters, or to a narrower field using alpha-emitters. Although radiolabeled antibodies have been approved for use in mostly follicular non-Hodgkin lymphoma, their effectiveness in solid tumors has been more challenging. This chapter provides a brief overview of how radioimmunoconjugates have progressed and the potential for their future.

Keywords

Bispecific Antibody Unconjugated Antibody Heavy Chain Constant Region Light Polypeptide Chain Heavy Chain Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors have been supported in part by the following US Public Health Service grants from the National Cancer Institute, NIH: P01 CA103985, R01 CA107088, R01 CA115755, and R01 CA098488.

References

  1. Aarts F, Bleichrodt RP, Oyen WJ, Boerman OC (2008) Intracavitary radioimmunotherapy to treat solid tumors. Cancer Biother Radiopharm 23:92–107PubMedGoogle Scholar
  2. Alvarez RD, Partridge EE, Khazaeli MB et al (1997) Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol 65:94–101PubMedGoogle Scholar
  3. Alvarez RD, Huh WK, Khazaeli MB et al (2002) A Phase I study of combined modality 90Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 8:2806–2811PubMedGoogle Scholar
  4. Andersson H, Cederkrantz E, Back T et al (2009) Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2–a phase I study. J Nucl Med 50:1153–1160PubMedGoogle Scholar
  5. Bale WF, Spar IL (1957) Studies directed toward the use of antibodies as carriers of radioactivity for therapy. Adv Biol Med Phys 5:285–356PubMedGoogle Scholar
  6. Bale WF, Spar IL, Goodland RL, Wolfe DE (1955) In vivo and in vitro studies of labeled antibodies against rat kidney and Walker carcinoma. Proc Soc Exp Biol Med 89:564–568PubMedGoogle Scholar
  7. Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72:257–266PubMedGoogle Scholar
  8. Behr TM, Behe M, Stabin MG et al (1999) High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res 59:2635–2643PubMedGoogle Scholar
  9. Behr TM, Blumenthal RD, Memtsoudis S et al (2000) Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin Cancer Res 6:4900–4907PubMedGoogle Scholar
  10. Bennett JM, Kaminski MS, Leonard JP et al (2005) Assessment of treatment-related myelodysplastic syndromes and acute myeloid leukemia in patients with non-Hodgkin lymphoma treated with tositumomab and iodine I131 tositumomab. Blood 105:4576–4582PubMedGoogle Scholar
  11. Bethge WA, Lange T, Meisner C et al (2010) Radioimmunotherapy with yttrium-90-ibritumomab tiuxetan as part of a reduced- intensity conditioning regimen for allogeneic hematopoietic cell transplantation in patients with advanced non-Hodgkin lymphoma: results of a phase 2 study. Blood 116:1795–1802PubMedGoogle Scholar
  12. Blumenthal RD, Sharkey RM, Haywood L et al (1992) Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res 52:6036–6044PubMedGoogle Scholar
  13. Boskovitz A, McLendon RE, Okamura T, Sampson JH, Bigner DD, Zalutsky MR (2009) Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of alpha-particle-emitting 211At-labeled trastuzumab. Nucl Med Biol 36:659–669PubMedCentralPubMedGoogle Scholar
  14. Buchegger F, Mach JP, Folli S, Delaloye B, Bischof-Delaloye A, Pelegrin A (1996) Higher efficiency of 131I-labeled anti-carcinoembryonic antigen-monoclonal antibody F(ab’)2 as compared to intact antibodies in radioimmunotherapy of established human colon carcinoma grafted in nude mice. Recent Results Cancer Res 141:19–35PubMedGoogle Scholar
  15. Buchegger F, Antonescu C, Delaloye AB et al (2006) Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin’s lymphoma. Br J Cancer 94:1770–1776PubMedCentralPubMedGoogle Scholar
  16. Buchmann I, Bunjes D, Kotzerke J et al (2002) Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm 17:151–163PubMedGoogle Scholar
  17. Buchsbaum DJ, Roberson PL (1996) Experimental radioimmunotherapy: biological effectiveness and comparison with external beam radiation. Recent Results Cancer Res 141:9–18PubMedGoogle Scholar
  18. Burdick MJ, Neumann D, Pohlman B, Reddy CA, Tendulkar RD, Macklis R (2010) External beam radiotherapy followed by 90Y-ibritumomab tiuxetan in relapsed or refractory bulky follicular lymphoma. Int J Radiat Oncol Biol Phys 78(4):1033–1039Google Scholar
  19. Carlsson J, Ren ZP, Wester K et al (2006) Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression. J Neurooncol 77:33–45PubMedGoogle Scholar
  20. Carrasquillo JA, Krohn KA, Beaumier P et al (1984) Diagnosis of and therapy for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat Rep 68:317–328PubMedGoogle Scholar
  21. Casaco A, Lopez G, Garcia I et al (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188Re in adult recurrent high-grade glioma. Cancer Biol Ther 7:333–339PubMedGoogle Scholar
  22. Chan A, Martin M, Untch M et al (2006) Vinorelbine plus trastuzumab combination as first-line therapy for HER 2-positive metastatic breast cancer patients: an international phase II trial. Br J Cancer 95:788–793PubMedCentralPubMedGoogle Scholar
  23. Chatal JF, Kraeber-Bodere F, Barbet J (2008) Consolidation radioimmunotherapy of follicular lymphoma: a step towards cure? Eur J Nucl Med Mol Imaging 35:1236–1239PubMedGoogle Scholar
  24. Chen S, Yu L, Jiang C et al (2005) Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23:1538–1547PubMedGoogle Scholar
  25. Cicone F, Russo E, Carpaneto A, et al (2010) Follicular lymphoma at relapse after rituximab containing regimens: comparison of time to event intervals prior to and after (90)Y-ibritumomab-tiuxetan. Hematol Oncol 2010Google Scholar
  26. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42:225–241PubMedGoogle Scholar
  27. Connors JM (2005) Radioimmunotherapy–hot new treatment for lymphoma. N Engl J Med 352:496–498PubMedGoogle Scholar
  28. Crow DM, Williams L, Colcher D, Wong JY, Raubitschek A, Shively JE (2005) Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconjug Chem 16:1117–1125PubMedGoogle Scholar
  29. Czuczman MS (2002) Immunochemotherapy in indolent non-Hodgkin’s lymphoma. Semin Oncol 29:11–17PubMedGoogle Scholar
  30. Czuczman MS, Emmanouilides C, Darif M et al (2007) Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol 25:4285–4292PubMedGoogle Scholar
  31. Davis TA, Kaminski MS, Leonard JP et al (2004) The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 10:7792–7798PubMedGoogle Scholar
  32. DeNardo SJ, DeNardo GL, O’Grady LF et al (1987) Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers 2:49–53PubMedGoogle Scholar
  33. DeNardo GL, DeNardo SJ, Lamborn KR et al (1998a) Low-dose, fractionated radioimmunotherapy for B-cell malignancies using 131I-Lym-1 antibody. Cancer Biother Radiopharm 13:239–254PubMedGoogle Scholar
  34. DeNardo SJ, Richman CM, Kukis DL et al (1998b) Synergistic therapy of breast cancer with Y-90-chimeric L6 and paclitaxel in the xenografted mouse model: development of a clinical protocol. Anticancer Res 18:4011–4018PubMedGoogle Scholar
  35. Devizzi L, Guidetti A, Tarella C et al (2008) High-dose yttrium-90-ibritumomab tiuxetan with tandem stem-cell reinfusion: an outpatient preparative regimen for autologous hematopoietic cell transplantation. J Clin Oncol 26:5175–5182PubMedGoogle Scholar
  36. Doolittle ND, Jahnke K, Belanger R et al (2007) Potential of chemo-immunotherapy and radioimmunotherapy in relapsed primary central nervous system (CNS) lymphoma. Leuk Lymphoma 48:1712–1720PubMedGoogle Scholar
  37. Esmaeli B, McLaughlin P, Pro B et al (2009) Prospective trial of targeted radioimmunotherapy with Y-90 ibritumomab tiuxetan (Zevalin) for front-line treatment of early-stage extranodal indolent ocular adnexal lymphoma. Ann Oncol 20:709–714PubMedGoogle Scholar
  38. Ettinger DS, Order SE, Wharam MD, Parker MK, Klein JL, Leichner PK (1982) Phase I-II study of isotopic immunoglobulin therapy for primary liver cancer. Cancer Treat Rep 66:289–297PubMedGoogle Scholar
  39. Fisher RI, Kaminski MS, Wahl RL et al (2005) Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J Clin Oncol 23:7565–7573PubMedGoogle Scholar
  40. Focosi D, Cecconi N, Boni G, Orciuolo E, Galimberti S, Petrini M (2008) Acute myeloid leukaemia after treatment with (90)Y-ibritumomab tiuxetan for follicular lymphoma. Hematol Oncol 26:179–181PubMedGoogle Scholar
  41. Foss FM, Raubitscheck A, Mulshine JL et al (1998) Phase I study of the pharmacokinetics of a radioimmunoconjugate, 90Y–T101, in patients with CD5-expressing leukemia and lymphoma. Clin Cancer Res 4:2691–2700PubMedGoogle Scholar
  42. Friedberg JW (2008) Secondary malignancies after therapy of indolent non-Hodgkin’s lymphoma. Haematologica 93:336–338PubMedGoogle Scholar
  43. Glatting G, Muller M, Koop B et al (2006) Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med 47:1335–1341PubMedGoogle Scholar
  44. Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122:467–481PubMedCentralPubMedGoogle Scholar
  45. Gold P, Shuster J, Freedman SO (1978) Carcinoembryonic antigen (CEA) in clinical medicine: historical perspectives, pitfalls and projections. Cancer 42:1399–1405PubMedGoogle Scholar
  46. Gold DV, Schutsky K, Modrak D, Cardillo TM (2003) Low-dose radioimmunotherapy (90Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res 9:3929S–3937SPubMedGoogle Scholar
  47. Goldenberg DM (1978a) Introduction to the international conference on the clinical uses of carcinoembryonic antigen. Cancer 42:1397–1398Google Scholar
  48. Goldenberg DM (1978b) Immunodiagnosis and immunodetection of colorectal cancer. Cancer Bull 30:213–218Google Scholar
  49. Goldenberg DM (1980) An introduction to the radioimmunodetection of cancer. Cancer Res 40:2957–2959PubMedGoogle Scholar
  50. Goldenberg DM (1988) Targeting of cancer with radiolabeled antibodies. Prospects for imaging and therapy. Arch Pathol Lab Med 112:580–587PubMedGoogle Scholar
  51. Goldenberg DM, DeLand F, Kim E et al (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386PubMedGoogle Scholar
  52. Goldenberg DM, Gaffar SA, Bennett SJ, Beach JL (1981) Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen. Cancer Res 41:4354–4360PubMedGoogle Scholar
  53. Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 40:122–135PubMedGoogle Scholar
  54. Gordon LI, Molina A, Witzig T et al (2004a) Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20 + B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood 103:4429–4431Google Scholar
  55. Gordon LI, Witzig T, Molina A et al (2004b) Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma 5:98–101Google Scholar
  56. Hainsworth JD, Spigel DR, Markus TM et al (2009) Rituximab plus short-duration chemotherapy followed by Yttrium-90 Ibritumomab tiuxetan as first-line treatment for patients with follicular non-Hodgkin lymphoma: a phase II trial of the Sarah Cannon Oncology Research Consortium. Clin Lymphoma Myeloma 9:223–228PubMedGoogle Scholar
  57. Hernandez MC, Knox SJ (2004) Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 59:1274–1287PubMedGoogle Scholar
  58. Hoffmann M, Troch M, Eidherr H et al (2010) 90Y-ibritumomab tiuxetan (Zevalin) in heavily pretreated patients with mucosa associated lymphoid tissue lymphoma. Leuk LymphomaGoogle Scholar
  59. Hohloch K, Zinzani PL, Linkesch W et al (2010) Radioimmunotherapy with 90Y-ibritumomab tiuxetan is a safe and efficient treatment for patients with B-cell lymphoma relapsed after Auto-SCT: an analysis of the international RIT-Network. Bone Marrow Transplant 46(6):901–903Google Scholar
  60. Huang Z, Brdlik C, Jin P, Shepard HM (2009) A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther 9:97–110PubMedGoogle Scholar
  61. Iwamoto FM, Schwartz J, Pandit-Taskar N et al (2007) Study of radiolabeled indium-111 and yttrium-90 ibritumomab tiuxetan in primary central nervous system lymphoma. Cancer 110:2528–2534PubMedGoogle Scholar
  62. Jacobs SA, Swerdlow SH, Kant J et al (2008) Phase II trial of short-course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma. Clin Cancer Res 14:7088–7094PubMedGoogle Scholar
  63. Jain N, Wierda W, Ferrajoli A et al (2009) A phase 2 study of yttrium-90 ibritumomab tiuxetan (Zevalin) in patients with chronic lymphocytic leukemia. Cancer 115:4533–4539PubMedGoogle Scholar
  64. Jazirehi AR, Bonavida B (2005) Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene 24:2121–2143PubMedGoogle Scholar
  65. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525PubMedGoogle Scholar
  66. Kaminski MS, Tuck M, Estes J et al (2005) 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352:441–449PubMedGoogle Scholar
  67. Kang BW, Kim WS, Kim C et al (2010) Yttrium-90-ibritumomab tiuxetan in combination with intravenous busulfan, cyclophosphamide, and etoposide followed by autologous stem cell transplantation in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Invest New Drugs 28:516–522PubMedGoogle Scholar
  68. Kapadia NS, Engles JM, Wahl RL (2008) In vitro evaluation of radioprotective and radiosensitizing effects of rituximab. J Nucl Med 49:674–678PubMedGoogle Scholar
  69. Karacay H, Brard PY, Sharkey RM et al (2005) Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 11:7879–7885PubMedGoogle Scholar
  70. Kassis AI (2008) Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 38:358–366PubMedCentralPubMedGoogle Scholar
  71. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46(Suppl 1):4S–12SPubMedGoogle Scholar
  72. Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70PubMedGoogle Scholar
  73. Kenanova V, Olafsen T, Williams LE et al (2007) Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 67:718–726PubMedGoogle Scholar
  74. Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29PubMedGoogle Scholar
  75. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedGoogle Scholar
  76. Kotzerke J, Bunjes D, Scheinberg DA (2005) Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant 36:1021–1026PubMedGoogle Scholar
  77. Kramer K, Humm JL, Souweidane MM et al (2007) Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol 25:5465–5470PubMedGoogle Scholar
  78. Kramer K, Kushner BH, Modak S et al (2010) Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol 97:409–418PubMedCentralPubMedGoogle Scholar
  79. Krishnan A, Nademanee A, Fung HC et al (2008) Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 26:90–95PubMedGoogle Scholar
  80. Leahy MF, Turner JH (2010) Radio-immunotherapy of indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year, single institution experience of 142 consecutive patients. Blood 117(1):45–52Google Scholar
  81. Li L, Quang TS, Gracely EJ et al (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113:192–198PubMedGoogle Scholar
  82. Liersch T, Meller J, Kulle B et al (2005) Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 23:6763–6770PubMedGoogle Scholar
  83. Link BK, Martin P, Kaminski MS, Goldsmith SJ, Coleman M, Leonard JP (2010) Cyclophosphamide, vincristine, and prednisone followed by tositumomab and iodine-131-tositumomab in patients with untreated low-grade follicular lymphoma: eight-year follow-up of a multicenter phase II study. J Clin Oncol 28:3035–3041PubMedGoogle Scholar
  84. Ma D, McDevitt MR, Barendswaard E et al (2002) Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia 16:60–66PubMedGoogle Scholar
  85. Magni M, Di Nicola M, Testi A et al (2010) Radioimmunotherapy and secondary leukemia: a case report. Leuk Res 34:e1–e4PubMedGoogle Scholar
  86. Mahe MA, Fumoleau P, Fabbro M et al (1999) A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 5:3249s–3253sPubMedGoogle Scholar
  87. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274PubMedGoogle Scholar
  88. Marvin JS, Zhu Z (2006) Bispecific antibodies for dual-modality cancer therapy: killing two signaling cascades with one stone. Curr Opin Drug Discov Devel 9:184–193PubMedGoogle Scholar
  89. Mattes MJ (2002) Radionuclide-antibody conjugates for single-cell cytotoxicity. Cancer 94:1215–1223PubMedGoogle Scholar
  90. Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM (2008) Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res 14:6154–6160PubMedGoogle Scholar
  91. McBride WJ, Zanzonico P, Sharkey RM et al (2006) Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med 47:1678–1688PubMedGoogle Scholar
  92. McDevitt MR, Ma D, Lai LT et al (2001) Tumor therapy with targeted atomic nanogenerators. Science 294:1537–1540PubMedGoogle Scholar
  93. McLendon RE, Akabani G, Friedman HS et al (2007) Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol 34:405–413PubMedCentralPubMedGoogle Scholar
  94. Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF (2007) Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 13:5643s–5645sPubMedGoogle Scholar
  95. Michel RB, Brechbiel MW, Mattes MJ (2003) A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med 44:632–640PubMedGoogle Scholar
  96. Montz R, Klapdor R, Rothe B, Heller M (1986) Immunoscintigraphy and radioimmunotherapy in patients with pancreatic carcinoma. Nuklearmedizin 25:239–244PubMedGoogle Scholar
  97. Moroney SPA (2005) Modern antibody technology: the impact on drug development. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  98. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855PubMedCentralPubMedGoogle Scholar
  99. Morschhauser F, Radford J, Van Hoof A et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164PubMedGoogle Scholar
  100. Morschhauser F, Dreyling M, Rohatiner A, Hagemeister F (2009) Bischof Delaloye A. Rationale for consolidation to improve progression-free survival in patients with non-Hodgkin’s lymphoma: a review of the evidence. Oncologist 14(Suppl 2):17–29PubMedGoogle Scholar
  101. Morschhauser F, Kraeber-Bodere F, Wegener WA et al (2010) High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol 28: 3709–3716Google Scholar
  102. Mueller BM, Reisfeld RA, Gillies SD (1990) Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc Natl Acad Sci U S A 87:5702–5705PubMedCentralPubMedGoogle Scholar
  103. Oei AL, Verheijen RH, Seiden MV et al (2007) Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer 120:2710–2714PubMedGoogle Scholar
  104. Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40:167–181PubMedCentralPubMedGoogle Scholar
  105. Order SE, Klein JL, Leichner PK (1981) Antiferritin IgG antibody for isotopic cancer therapy. Oncology 38:154–160PubMedGoogle Scholar
  106. Paganelli G, Bartolomei M, Grana C, Ferrari M, Rocca P, Chinol M (2006) Radioimmunotherapy of brain tumor. Neurol Res 28:518–522PubMedGoogle Scholar
  107. Pennington K, Guarion MJ, Serafini AN et al (2009) Multicenter study of radiosensitizing gemcitabine combined with fractionated radioimmunotherapy for repeated treatment cycles in advanced pancreatic cancer. J Clin Oncol 27:231 (abstract 4620)Google Scholar
  108. Pennington KL, Guarion MJ, Sheikh A, et al (2010) Repeated treatment cycles of fractionated radioimmunotherapy (RAIT) combined with low-dose radiosensitizing gemcitabine (Gem) in advanced pancreatic cancer (APC). ASCO GI Symposium, Orlando, Abstract 247Google Scholar
  109. Perrotti AP, Niscola P, Boemi S et al (2009) Long-lasting remission of a relapsed large cell non-Hodgkin’s lymphoma by Y90 ibritumomab tiuxetan as salvage therapy. Tumori 95:129–130PubMedGoogle Scholar
  110. Pitini V, Baldari S, Altavilla G, Arrigo C, Naro C, Perniciaro F (2007) Salvage therapy for primary central nervous system lymphoma with 90Y-Ibritumomab and Temozolomide. J Neurooncol 83:291–293PubMedGoogle Scholar
  111. Pressman D, Keighley G (1948) The zone of activity of antibodies as determined by the use of radioactive tracers. Fed Proc 7:308PubMedGoogle Scholar
  112. Pressman D, Korngold L (1953) The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 6:619–623PubMedGoogle Scholar
  113. Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470PubMedGoogle Scholar
  114. Qu Z, Griffiths GL, Wegener WA et al (2005) Development of humanized antibodies as cancer therapeutics. Methods 36:84–95PubMedGoogle Scholar
  115. Quintas-Cardama A, Wierda W, O’Brien S (2010) Investigational immunotherapeutics for B-cell malignancies. J Clin Oncol 28:884–892PubMedGoogle Scholar
  116. Raben D, Helfrich B, Chan DC et al (2005) The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 11:795–805PubMedGoogle Scholar
  117. Reardon DA, Quinn JA, Akabani G et al (2006a) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47:912–918Google Scholar
  118. Reardon DA, Akabani G, Coleman RE et al (2006b) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122Google Scholar
  119. Reardon DA, Zalutsky MR, Bigner DD (2007) Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther 7:675–687PubMedGoogle Scholar
  120. Reardon DA, Zalutsky MR, Akabani G et al (2008) A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 10:182–189PubMedCentralPubMedGoogle Scholar
  121. Richman CM, Denardo SJ, O’Donnell RT et al (2005) High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res 11:5920–5927PubMedGoogle Scholar
  122. Robert N, Leyland-Jones B, Asmar L et al (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24:2786–2792PubMedGoogle Scholar
  123. Roboz GJ, Bennett JM, Coleman M et al (2007) Therapy-related myelodysplastic syndrome and acute myeloid leukemia following initial treatment with chemotherapy plus radioimmunotherapy for indolent non-Hodgkin lymphoma. Leuk Res 31:1141–1144PubMedGoogle Scholar
  124. Sacchi S, Marcheselli L, Bari A et al (2008) Secondary malignancies after treatment for indolent non-Hodgkin’s lymphoma: a 16-year follow-up study. Haematologica 93:398–404PubMedGoogle Scholar
  125. Shah JJ, Meredith R, Shen S et al (2006) Case report of a patient with primary central nervous system lymphoma treated with radioimmunotherapy. Clin Lymphoma Myeloma 7:236–238PubMedGoogle Scholar
  126. Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652PubMedGoogle Scholar
  127. Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46(Suppl 1):115S–127SPubMedGoogle Scholar
  128. Sharkey RM, Goldenberg DM (2006) Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin 56:226–243PubMedGoogle Scholar
  129. Sharkey RM, Pykett MJ, Siegel JA, Alger EA, Primus FJ, Goldenberg DM (1987) Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 47:5672–5677PubMedGoogle Scholar
  130. Sharkey RM, Motta-Hennessy C, Pawlyk D, Siegel JA, Goldenberg DM (1990) Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res 50:2330–2336PubMedGoogle Scholar
  131. Sharkey RM, Weadock KS, Natale A et al (1991) Successful radioimmunotherapy for lung metastasis of human colonic cancer in nude mice. J Natl Cancer Inst 83:627–632PubMedGoogle Scholar
  132. Sharkey RM, Karacay H, Cardillo TM et al (2005a) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109s–7121sPubMedGoogle Scholar
  133. Sharkey RM, Cardillo TM, Rossi EA et al (2005b) Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 11:1250–1255PubMedGoogle Scholar
  134. Sharkey RM, Burton J, Goldenberg DM (2005) Radioimmunotherapy of non-Hodgkin’s lymphoma: a critical appraisal. Expert Rev Clin Immunol 1:47–62Google Scholar
  135. Sharkey RM, Press OW, Goldenberg DM (2009) A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 113:3891–3895PubMedCentralPubMedGoogle Scholar
  136. Shimoni A, Zwas ST, Oksman Y et al (2008) Ibritumomab tiuxetan (Zevalin) combined with reduced-intensity conditioning and allogeneic stem-cell transplantation (SCT) in patients with chemorefractory non-Hodgkin’s lymphoma. Bone Marrow Transplant 41:355–361PubMedGoogle Scholar
  137. Silverstein AM (2004) Labeled antigens and antibodies: the evolution of magic markers and magic bullets. Nat Immunol 5:1211–1217PubMedGoogle Scholar
  138. Skvortsova I, Popper BA, Skvortsov S et al (2005) Pretreatment with rituximab enhances radiosensitivity of non-Hodgkin’s lymphoma cells. J Radiat Res (Tokyo) 46:241–248Google Scholar
  139. Skvortsova I, Skvortsov S, Popper BA et al (2006) Rituximab enhances radiation-triggered apoptosis in non-Hodgkin’s lymphoma cells via caspase-dependent and—independent mechanisms. J Radiat Res (Tokyo) 47:183–196Google Scholar
  140. Slavin-Chiorini DC, Kashmiri SV, Schlom J et al (1995) Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res 55:5957s–5967sPubMedGoogle Scholar
  141. Strohl WR (2009) Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 20:685–691PubMedGoogle Scholar
  142. Thomson DM, Krupey J, Freedman SO, Gold P (1969) The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A 64:161–167PubMedCentralPubMedGoogle Scholar
  143. Vallera DA, Elson M, Brechbiel MW et al (2003) Preclinical studies targeting normal and leukemic hematopoietic cells with Yttrium-90-labeled anti-CD45 antibody in vitro and in vivo in nude mice. Cancer Biother Radiopharm 18:133–145PubMedGoogle Scholar
  144. van Gog FB, Brakenhoff RH (1998) Stigter-van Walsum M, Snow GB, van Dongen GA. Perspectives of combined radioimmunotherapy and anti-EGFR antibody therapy for the treatment of residual head and neck cancer. Int J Cancer 77:13–18PubMedGoogle Scholar
  145. Wang M, Oki Y, Pro B et al (2009) Phase II study of yttrium-90-ibritumomab tiuxetan in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 27:5213–5218PubMedGoogle Scholar
  146. Weiner LM (2006) Fully human therapeutic monoclonal antibodies. J Immunother 29:1–9PubMedGoogle Scholar
  147. Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27:502–520PubMedGoogle Scholar
  148. Witzig TE, Gordon LI, Cabanillas F et al (2002a) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463PubMedGoogle Scholar
  149. Witzig TE, Flinn IW, Gordon LI et al (2002b) Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 20:3262–3269PubMedGoogle Scholar
  150. Wong JY, Shibata S, Williams LE et al (2003) A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res 9:5842–5852PubMedGoogle Scholar
  151. Wygoda Z, Tarnawski R, Brady L et al (2002) Simultaneous radiotherapy and radioimmunotherapy of malignant gliomas with anti-EGFR antibody labelled with iodine 125. Preliminary results. Nucl Med Rev Cent East Eur 5:29–33PubMedGoogle Scholar
  152. Wygoda Z, Kula D, Bierzynska-Macyszyn G et al (2006) Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma (Larchmt) 25:125–132Google Scholar
  153. Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. MAbs 1:230–236PubMedCentralPubMedGoogle Scholar
  154. Ychou M, Azria D, Menkarios C et al (2008) Adjuvant radioimmunotherapy trial with iodine-131-labeled anti-carcinoembryonic antigen monoclonal antibody F6 F(ab’)2 after resection of liver metastases from colorectal cancer. Clin Cancer Res 14:3487–3493PubMedCentralPubMedGoogle Scholar
  155. Zalutsky MR, Reardon DA, Akabani G et al (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38PubMedCentralPubMedGoogle Scholar
  156. Zhang MM, Gopal AK (2008) Radioimmunotherapy-based conditioning regimens for stem cell transplantation. Semin Hematol 45:118–125PubMedCentralPubMedGoogle Scholar
  157. Zhang M, Yao Z, Garmestani K et al (2002) Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood 100:208–216PubMedGoogle Scholar
  158. Zhang N, Khawli LA, Hu P, Epstein AL (2005) Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin’s lymphomas. Clin Cancer Res 11:5971–5980PubMedGoogle Scholar
  159. Zhang M, Yao Z, Zhang Z et al (2006) The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res 66:8227–8232PubMedGoogle Scholar
  160. Zhang M, Yao Z, Patel H et al (2007) Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A 104:8444–8448PubMedCentralPubMedGoogle Scholar
  161. Zinzani PL, Tani M, Fanti S et al (2008a) A phase II trial of CHOP chemotherapy followed by yttrium 90 ibritumomab tiuxetan (Zevalin) for previously untreated elderly diffuse large B-cell lymphoma patients. Ann Oncol 19:769–773Google Scholar
  162. Zinzani PL, Tani M, Fanti S et al (2008b) A phase 2 trial of fludarabine and mitoxantrone chemotherapy followed by yttrium-90 ibritumomab tiuxetan for patients with previously untreated, indolent, nonfollicular, non-Hodgkin lymphoma. Cancer 112:856–862Google Scholar
  163. Zinzani PL, Tani M, Pulsoni A et al (2008c) Fludarabine and mitoxantrone followed by yttrium-90 ibritumomab tiuxetan in previously untreated patients with follicular non-Hodgkin lymphoma trial: a phase II non-randomised trial (FLUMIZ). Lancet Oncol 9:352–358Google Scholar
  164. Zinzani PL, Gandolfi L, Stefoni V et al (2010a) Yttrium-90 ibritumomab tiuxetan as a single agent in patients with pretreated B-cell lymphoma: evaluation of the long-term outcome. Clin Lymphoma Myeloma Leuk 10:258–261Google Scholar
  165. Zinzani PL, Rossi G, Franceschetti S et al (2010b) Phase II trial of short-course R-CHOP followed by 90Y-ibritumomab tiuxetan in previously untreated high-risk elderly diffuse large B-cell lymphoma patients. Clin Cancer Res 16:3998–4004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Garden State Cancer Center at the Center for Molecular Medicine and ImmunologyMorris PlainsUSA

Personalised recommendations