Rhenium-188 Generator-Based Radiopharmaceuticals for Therapy

  • F. F. (Russ) Knapp
  • J. Kropp
  • K. Liepe
Part of the Medical Radiology book series (MEDRAD)


Because of its on-demand availability from the 188W/188Re generator, broad interest has developed in the therapeutic use of 188Re for a wide variety of applications in nuclear medicine, oncology and interventional specialties. Rhenium-188 decays with emission of high energy β-particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and a gamma photon for imaging (155 keV, 15.1%). The 188W/188Re generator has an extended useful shelf-life of several months, which insures the continuous on demand radiopharmacy availability of 188Re. In addition to the ongoing development and evaluation of various 188Re-labeled agents, promising results using a variety of 188Re radiopharmaceuticals have been reported. The use of 188Re-HEDP has been evaluated in multiple trials as an effective agent for the treatment of metastatic bone pain. In addition, promising clinical data have been reported using trans arterial delivery of a variety of 188Re-labeled agents, including microspheres and Lipiodol analogues, for therapy of liver metastases and primary liver cancer. Use of 188Re-microspheres have also provided promising data for treatment of arthritis. Angioplasty balloons filled with liquids containing various 188Re-labeled agents for intravascular radiation therapy (IVRT) have been shown to effectively inhibit coronary and peripheral arterial restenosis. For this application, a variety of 188Re agents been evaluated, including perrhenate, DTPA and MAG3. These IVRT coronary studies have in particular demonstrated that event-free survival in patients is significantly longer compared to the placebo patients. Successful clinical applications have also been reported using 188Re-labeled patches for treatment of basal and squamous cell skin cancer, as an alternative to surgical removal. The expected further development, regulatory approval and commercialization of 188Re-labeled agents will add new capabilities for radionuclide therapy.


Bone Metastasis Colorectal Liver Metastasis Primary Liver Cancer Target Lesion Revascularization Radionuclide Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research at the Oak Ridge National Laboratory (ORNL) is supported by the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.


  1. Anderson P (2006) Samarium for osteoblastic bone metastases and osteosarcoma. Expert Opin Pharmacother 7:1–7Google Scholar
  2. Andreef M, Wunderlich G, Behage K, Schoenmuth Th, Kotzerke J (2005) β-radiation exposure with 188Re-labelled pharmaceuticals. Nuklearmedizin 44:94–98Google Scholar
  3. Andrews JC, Walker SC et al (1994) Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 35:1637–1644PubMedGoogle Scholar
  4. Arteaga de Murphy C, Ferro-Flores G et al (2001) Labelling of Re-ABP with 188Re for bone pain palliation. Appl Radiat Isot 54:435–442PubMedGoogle Scholar
  5. Atkins HL, Mausner LF et al (1995) Tin-117 m(4 +)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med 36:725–729PubMedGoogle Scholar
  6. Bacher K, Thierens H, Van de Putte S, Brans B, Monsieurs M, Dierckx RA (2001) 188Re-lipiodol: prediction of the patient dose based on 131I-lipiodol bi-planar scanning and monte carlo simulation. Eur J Nucl Med 28:1196Google Scholar
  7. Barth I, Rimpler A, Nikula T, Schlip M, Buck O, Wengenmair H, Leissner G, Koop J, Scluk J (2009) Radiation exposue of staff during endovascular brachytherapy with Re-188 after PTA in the peripheral blood stream. Z Med Phys 19:193–199 (in German)PubMedGoogle Scholar
  8. Bastian P, Bartkowski R et al (1998) Chemo-embolization of experimental liver metastases. Part I: distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy. Eur J Pharm Biopharm 46:243–254PubMedGoogle Scholar
  9. Ben-Josef E, Lucas DR et al (1995) Selective accumulation of strontium-89 in metastatic deposits in bone: radio-histological correlation. Nucl Med Commun 16:457–463PubMedGoogle Scholar
  10. Bernal P, Raoul JL, Sereegotov E, Sundram FX, Kumar A, Jeong JM, Pusuwan P, Divgi C, Zanzonica P, Stare J, Buscombe J, Thi Minh CT, Chen S, Ogbac R, Pady AK (2007) Intra-arterial Rehnium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys 69:1448–1455PubMedGoogle Scholar
  11. Bernal P, Raoul JL et al (2008) International atomic energy agency-sponsored multination study of intra-arterial rhenium-188-labeled lipiodol in the treatment of inoperable hepatocellular carcinoma: results with special emphasis on prognostic value of dosimetric study. Semin Nucl Med 38:S40–S45PubMedGoogle Scholar
  12. Biersack HJ (2010) Guest Editorial. Sem Nucl Med 40:77Google Scholar
  13. Bismuth H, Adam R, et al. (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520 (discussion 520–532)Google Scholar
  14. Blower PJ, Kettle AG, O’Doherty MJO, Coakley AJ, Knapp FF Jr (2000) 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med 27:1405–1409Google Scholar
  15. Blower PJ, Lam ASK, O’Doherty MJ, Kettle AG, Coakley AJ, Knapp FF Jr (1998) Biodistribution and dosimetry of pentavlaent Rhenium-188-dimercaptosuccinic acid in patients with disseminated bone metastasis. Eur J Nucl Med 25:613–621PubMedGoogle Scholar
  16. Bonvini R, Baumgartner I, Do DD, Alerci M, Segatto JM, Tutta P, Jaeger K (2003) Markus Aschwanden M, Schneider E, Amann-Vesti B, Greiner R, Mahler F, Gallino A, Late Acute Thrombotic Occlusion After Endovascular Brachytherapy and Stenting of Femoropopliteal Arteries. J Am Coll Cardiol 41:409–412PubMedGoogle Scholar
  17. Boschi A, Bolzati C, Uccelli L, Duatti A (2003) High-yield synthesis of the terminal 188Re-nitrile multiple bond from generator-produced [188Re04]-. Nucl Med Biol 4:381–387Google Scholar
  18. Boschi A, Uccelli L, Duatti A, Colamussi P, Cittanti C, Filice A, Rose AH, Martindale AA, Lanringbold PG, Kearney D, Galeotti R, Turner JH, Giganti M (2004) A kit formulation of the preparation of Re-188-Lipiodol: preclinical studies and preliminary therapeutic evaluation in patients with unresectable hepatocellular carcinoma. Nucl Med Commun 25:691–699PubMedGoogle Scholar
  19. Breen SL, Battista JJ (2000) Cavity theory applied to the dosimetry of systemic radiotherapy of bone metastases. Phys Med Biol 45:879–896PubMedGoogle Scholar
  20. Buchmann I, Bunjes D, Kotzerke J, Martin H, Glatting G, Seitz U, Rattat D, Buck A, Doehner H, Reske SN (2002) Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Can Biother Radiopharm 17:151–164Google Scholar
  21. Bult W, Vente MAD, Zonnenberg BA, Van Het Schip AD, Nijsen JFW (2009) Microsphere radioimbolizatiom of liver malignancies: current developments. Q J Nucl Med Imaging 53:325–335Google Scholar
  22. Bunjes D, Buchmann I, Duncker C, Seitz U, Kotzerke J, Wiesenth M, Dohr D, Stafnic M, Buck A, Harsdorf SV, Glatting G, Grimminger W, Karakas T, Munzert G, Dohner H, Bergmann L, Reske SN (2001) Rhenium-188-labeled anti-CD-66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodyspalstic syndrome: results of phase I-II study. Blood 98:564–572Google Scholar
  23. Callahan AP, Rice DE, Knapp FF Jr (1989) Re-188 for therapeutic applications from an alumina based W-188/Re-188 radionuclide generator system. NucCompact 20:3–6Google Scholar
  24. Chakravarty R, Dash A, Kothari K, Pillai MRA, Venkatesh M (2009) A novel 188W/188Re electrochemical generator with potential for medical applications. Radiochim Acta 97:309–317Google Scholar
  25. Cheneau E, Wu Z, Leborgne L, Ajani AE, Weissman N, Pichard AD, Satler LF, Kent KM, Mintz G, Waksman R (2003) Additional stenting promotes intimal proliferation and compromises the results of intravascular radiation therapy: an intravascular ultrasound study. Am Heart J 146(1):142–145PubMedGoogle Scholar
  26. Chinnaiyan P, Huang S et al (2003) Radiosensitization following EGFR signaling inhibition by erlotinib (Tarceva). Int J Radiat Oncol Biol Phys 57(2 Suppl):S294Google Scholar
  27. Cho YS, Kim MA, Hwang KK, Koo BK, Oh S, Chae IH, Kim HS, Lee DS, Oh BH, Lee MM, Park YB, Choi YS (2004) Two-year clinical follow-up results of intracoronary radiation therapy with rhenium-188-diethylenetriaminepentaacetic acid-filled balloon. Catheter Cardiovasc Interv 63:274–281PubMedGoogle Scholar
  28. Conzone SD, Hafeli UO, Day DE, Ehrhardt GJ (1998) Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy. J Biomed Mater Res 42:617–625PubMedGoogle Scholar
  29. Cunningham D, Humblet Y et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedGoogle Scholar
  30. Cyr JE, Pearson DA, Wilson DM, Nelson C, Guaraldi M, Azure MT, Lister-James J, Dinkelborg LM, Dean RT (2007) Somatostatin receptor binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. chemistry and initial biologcial studies. J Med Chem 50:1354–1364PubMedGoogle Scholar
  31. Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG (2002) Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 29:13–18PubMedGoogle Scholar
  32. Dadachova E, Howell RW, Bryan RA, Frankel BA, Nosanchuk JD, Casadevall A (2004a) Susceptibility of human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum to γ-radiation versus radioimmunotherapy with α- and β-emitting radioisotopes. J Nucl Med 45:313–320PubMedGoogle Scholar
  33. Dadachova E, Nosanchuk JD, Shi L, Schweitzer AD, Frenkel A, Nosanchuk JS, Casadevall A (2004b) Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radiation by a mAb to melanin. Proc Nat Acad Sci 101:14865–14870PubMedCentralPubMedGoogle Scholar
  34. Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, Howell RC, Burns L, Thornton GB, Natarajan A, Mirick GR, Denardo SJ, Denardo GL, Casadevall A (2008) Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Can Biol Ther 7:1116–1127Google Scholar
  35. Dafermo AF, Colamussi PF et al (2001) A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med 7:788–798Google Scholar
  36. de Klerk JM, Zonnenberg BA et al (1994) Dose escalation study of rhenium-186 hydroxyethylidene diphosphonate in patients with metastatic prostate cancer. Eur J Nucl Med 21:1114–1120PubMedGoogle Scholar
  37. De Ruyck K, Lambert B, Bacher K, Gemmel F, De Vos F, Vral A, de Ridder L, Dierckx RA, Thierens H (2004) Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatcellular carcinoma. J Nucl Med 45:612–618PubMedGoogle Scholar
  38. DeBecker M, Backer K, Thierens H, Slegers G, Dierckx RA, De Vos F (2008) In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol 35:599–604Google Scholar
  39. Debes JD, Tindall DJ (2002) The role of androgens and the androgen receptor in prostate cancer. Cancer Lett 187:1–7PubMedGoogle Scholar
  40. Deutsch EJ, Brodack W et al (1993) Radiation synovectomy revisited. Eur J Nucl Med 20:1113–1127PubMedGoogle Scholar
  41. Dinkelborg LM, Tepe G, Noll B, Muschik P, Duda SH (2000) 186Re-labeled stents for prophylaxis of restenosis: first animal results. J Nucl Med 41(Suppl):7PGoogle Scholar
  42. Duatti A, Martindale AA, Tuner JA, Boschi A, Giganti M, Bolzati C, Uccelli L (2002) Rhenium-188 lipidol kit formulation for therapy of hepatocellular carcinoma (HCC). World J Nucl Med 1(Suppl 2):S180Google Scholar
  43. Duatti A, Pasquali M, Uccelli L, Boschi A, Giganti M (2007) Radiopharmaceuticals for treatment of HCC. Quar J Nucl Med 51:380Google Scholar
  44. Eary JF, Collins C et al (1993) Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med 34:1031–1036PubMedGoogle Scholar
  45. Edelman M, Clamon G, Kahn D, Magram M, Lisetr-James J, Line BR (2009) Targeted radiopharmaceutical therapy for advanced lung cancer—phase I trial of rhenium-188 Re188-P2045, a somatostatin analog. J Thor Oncol 4:1550–1554Google Scholar
  46. Ehrhardt GJ, Ketering AR, Liang Q (1992) Improved W-188/Re-188 zirconium tungstate gel radioisotope generator chemistry. Radioact Radiochem 3:38–41Google Scholar
  47. Eigler N, Whiting J, Chernomorsky A, Jackson J, Knapp FF Jr, Litvack F (1998) RADIANTTM liquid isotope intravascular radiation therapy system. In: “Proceedings, second annual symposium on radiotherapy to reduce restenosis,” Sponsored by scripps clinic and research foundation, La Jolla, 16–17 Jan 1998Google Scholar
  48. Eigler N, Whiting J, Makkar R, Honda H, Knapp FF Jr, Litvack F, Li A (1999) The 188Re generator approach. In: Syllabus, cardiovascular radiation III conference, Washington, 17–19 Feb 1999, pp 391–397Google Scholar
  49. Eisenhut M, Berberich R et al (1986) Iodine-131-labeled diphosphonates for palliative treatment of bone metastases: II. Preliminary clinical results with iodine-131 BDP3. J Nucl Med 27:1255–1261PubMedGoogle Scholar
  50. Ellis LM, Curley SA et al (2004) Radiofrequency ablation for cancer: current indications, techniques and outcomes. Springer, New YorkGoogle Scholar
  51. El-Mabhouh A, Mercer JR (2005) 188Re-labeled bisphosphonates as potential bifunctional agents for therapy in patients with bone metastases. Appl Radiat Isot 62:541–549PubMedGoogle Scholar
  52. Emami B, Lyman J et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  53. Enrique O, Zhonyun P et al (2002) Efficacy and toxicity of Sm-153 EDTMP in the palliative treatment of painful bone metastases. World J Nucl Med 1:21–27Google Scholar
  54. Fellinger K, Schmid J (1952) Die lokale Behandlung der rheumatischen Erkrankung. Wien Z Inn Med 33:351–363PubMedGoogle Scholar
  55. Ferro-Flores G, Arteaga de Murphy C (2008) Pharmacokinetics and domsietry of 188Re-pharmaceuticals. Adv Drug Rev 60:1398–1401Google Scholar
  56. Fettich J, Padhy AK et al (2003) Comparative clinical efficacy and safety of phosphorus and strontium-89 in the palliative treatment of metastatic bone apin: results of an IAEA coordination research project. W J Nucl Med 2:226–231Google Scholar
  57. Fizazi K, Yang J et al (2003) Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res 9:2587–2597PubMedGoogle Scholar
  58. Fox RA, Henson PW (2000) The dosimetry for a coronary artery stent coated with radioactive 188Re and 32P. Phys Med Biol 45:3643–3655PubMedGoogle Scholar
  59. Friedell HL, Storaasli JP (1950) The use of radioactive phosphorus in treatment of carcinoma of the breast with widespread metastasis in bone. Am J Radiol 64:559–575Google Scholar
  60. Garin E, Denizot B, Noiret N, Lepareur N, Roux JC, Moreau M, Herry JY, Bourguet P, Benoit JP, Lejeune JJ (2004a) 188Re-SSS lipioldol: radiolabeling and biodistribution following injection into the hepatic artery of rats bearing hepatoma. Nucl Med Commun 25:1007–1014PubMedGoogle Scholar
  61. Garin E, Denizot B, Roux J, Noiret N, Lepareur N, Moreau M, Mesba H, Laurent JF, Herry JY, Bourguet P, Benoit JP, Lejeune JJ (2005) Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat. Lab Anim 39:314–320PubMedGoogle Scholar
  62. Garin E, Noire N, Malbert C, Lepareur N, Roucoux A, Caulet-Maugendre S, Moisan A, Lecloirec J, Henry JY, Bourgeut P (2004b) Development and biodistribution of 188Re-SSS lipiodol following injection into the hepatic artery of healthy pigs. Eur J Nucl Med 31:542–546Google Scholar
  63. Garin E, Rakotonirina H, Lejeune F, Denizot B, Roux J, Noiret N, Mesbah H, Herry JY, Bourguet P, Lejeune JJ (2006) Effect of 188Re-SSS lipiodol/131I-lipiodol mixture, 188Re-SSS lipiodol alone or 131I-lipiodol alone on the survival of rats with hepatocellular carcinoma. Nucl Med Commun 27:363–370PubMedGoogle Scholar
  64. Gilber JM, Jeffrey I et al (1984) Sites of recurrent tumour after ‘curative’ colorectal surgery: implications for adjuvant therapy. Br J Surg 71:203–205Google Scholar
  65. Gilligan T, Kantoff PW (2002) Chemotherapy for prostate cancer. Urology 60(Suppl 1):94–100; discussion 100Google Scholar
  66. Goin J, Dancey JE et al (2003) Treatment of unresectable metastatic colorectal carcinoma to the liver with intrahepatic Y-90 microspheres: dose-ranging study. World J Nucl Med 2:216–225Google Scholar
  67. Graham C, Bond SS et al (1980) Use of the McGill pain questionnaire in the assessment of cancer pain: replicability and consistency. Pain 8:377–387PubMedGoogle Scholar
  68. Grise MA, Massullo V, Jani S, Popma JJ, Russo RJ, Schatz RA, Guarneri EM, Steuterman S, Cloutier DA, Leon MB, Tripuraneni P, Teirstein PS (2002) Five-year clinical follow-up after intracoronary radiation. Circulation 105:2737–2740PubMedGoogle Scholar
  69. Guhlke S, Schaffland A, Zamora PO, Sartor J, Diekmann D, Bender H, Knapp FF Jr, Biersack HJ (1998) Rhenium-188 and Technetium-99 m labeling of peptides via Mercaptoacetyltriglycyl (MAG3) conjugates and applications for labeling the RC-160 somatostatin analogue. Nucl Med Biol 25:621–632PubMedGoogle Scholar
  70. Hafeli U, Pauer G, Failing S, Tapolsky G (2001a) “Radiolabeling of magnetic particles with Rhenium-188 for cancer therapy”. J. Magnetism Magnetic Mat 225:73–78Google Scholar
  71. Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD, Day DE (1999) Hepatic tumor radioembolization in a rat model using radioactive Rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 44:189–199PubMedGoogle Scholar
  72. Hafeli UO, Roberts WK et al (2001b) Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation. Appl Radiat Isot 54:869–879PubMedGoogle Scholar
  73. Hambye AS, Dobbelier A, Vervaet AM, Knapp FF Jr (2002) Image quality with Rhenium-188 and Technetium-99 m: comparative planar and SPECT evaluation in a phantom study and implications for dosimetry. World J Nucl Med 1:12–20Google Scholar
  74. Hang CL, Fu M, Hsieh BT, Leung SW, Wu CJ, Ting G (2003a) Intracoronary beta-irradiation with liquid Rhenium-188 to prevent restenosis following pure balloon angioplasty: results from the TRIPPER-1 study. Chang Gung Med J 26:98–106Google Scholar
  75. Hang CL, Fu M, Hsieh BT, Leung SW, Wu CJ, Yip HK, Ting G (2003b) Intracoronary beta-irradiation with liquid Rhenium-188: results of the Taiwan radiation in prevention of post-pure balloon angiolplasty restnosis study. Chest 124:1284–1293Google Scholar
  76. Harari PM, Huang SM (2002) Epidermal growth factor receptor modulation of radiation response: preclinical and clinical development. Semin Radiat Oncol 12(Suppl 2):21–26PubMedGoogle Scholar
  77. Hausleiter J, Li A, Makkar R, Berman D, Robinson A, Litvack F, Eigler N, Whiting J (2001) Leakage of a liquid 188Re-filled balloon system during intracorornary brachytherapy. A case report. Cardiovasc Radiat Med 2:7–10PubMedGoogle Scholar
  78. Henning E, Dittmann H, Wiskirchen J, Bantleon R, Kehlbach R, Claussen CD, Duda SH (2004) Dose dependent effects of the combined beta-gamma-emitter 188Rhenium on the growth of human vessel wall cells fortschr roentgenstr 176:404–408Google Scholar
  79. Hind RE, Loizidou M et al (1992) Biodistribution of lipiodol following hepatic arterial injection. Br J Surg 79:952–954PubMedGoogle Scholar
  80. Ho S, Lau WY et al (1997) Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 24:293–298PubMedGoogle Scholar
  81. Hosono MN, Hosono m et al (1998) Localization of colorectal carcinoma by rhenium-188-labeled B72.3 antibody in xenografted mice. Ann Nucl Med 12:83–88PubMedGoogle Scholar
  82. Hsieh BT, Hsieh JF, Tsai SC, Lin WY, Huang HT, Ting G, Wang SJ (1999) Rhenium-188-labeled DTPA: a new radiopharmaceutical for intravascular radiation therapy. Nucl Med Biol 26:967–972PubMedGoogle Scholar
  83. International commission on radiological protection (1995) Basis anatomical and physiological data for use in radiobiological protection. Part 1. Skeleton. IRCP Publication 70. Ann IRCP 25:1–80Google Scholar
  84. Jaeckel B, Cripps R, Guentay S, Bruchertseifer H (2005) Development of semi-automated system for preparation of 188Re aqueous solutions of high and reproducible activity concentrations. Appl Radiat Isot 63:299–304Google Scholar
  85. Jeong JM, Chung JK (2003) Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Can Biother Radiopharm 18:707–717Google Scholar
  86. Jeong JM, Kim YJ, lee YS, Lee DS, Chung JK, Cho JH, Suh YG, Lee MC (2001a) Introduction of long alkyl group helps uptake and retention of lipiodol solution of 188Re-N2S2 derivatives in the tissues. J Lab Cmpds Radiopharm 44(Suppl. 1):S532–S533Google Scholar
  87. Jeong JM, Kim YK, Lee YS, Ko JI, Son M, Lee DS, Chung JK, Park JH, Lee MC (2001b) Lipiodol solution of a lipophilic agent, 188Re-TDD, for the treatment of liver cancer. Nucl Med Biol 28:197–204PubMedGoogle Scholar
  88. Jeong JM, Knapp FF Jr (2008) Use of the oak ridge national laboratory Tungsten-188/Rhenium-188 generator for preparation of the Rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy. Semin Nucl Med 38:S19–S29PubMedGoogle Scholar
  89. Jeong JM, Lee YJ, Kim EH, Chang YS, Kim YJ, Son M, Lee DS, Chung JK, Lee MC (2003) Preparation of 188Re-labeled paper for treating skin cancer. Appl Radiat Isot 58:551–555PubMedGoogle Scholar
  90. Junfeng Y, Duanzhi Y et al (1999) [188Re]Rhenium sulfide suspension: a potential radiopharmaceutical for tumor treatment following intra-tumor injection. Nucl Med Biol 26:573–579PubMedGoogle Scholar
  91. Juweid M, Sharkey RM et al (1998) Pharmacokinetics, dosimetry and toxicity of rhenium-188-labeled anti-carcinoembryonic antigen monoclonal antibody, MN-14, in gastrointestinal cancer. J Nucl Med 39:34–42PubMedGoogle Scholar
  92. Kakonen SM, Selander KS et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277:24571–24578PubMedGoogle Scholar
  93. Kamioki H, Mirzadeh S, Lambrecht RM, Knapp FF Jr, Dadachova E (1994) Tungsten-188/Rhenium-188 generator for biomedical applications. Radiochim Acta 65:39–46Google Scholar
  94. Kennedy AS, Coldwell D et al (2006) Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 65:412–425PubMedGoogle Scholar
  95. Kim JH, Shin JH, Song H-Y, Shim TS, Oh Y-M, Oh SJ, Moon DH (2008) Liquid 188Re-filled balloon dilation for the treatment of refractory benign airway strictures: preliminary experience. J Vasc Radiol 19:406–411Google Scholar
  96. Klein M, Shibli N, Friedman N, Thornton GB, Lotem CR (2008) Imaging of metastatic melanoma (MM) with a 188Re-labeled melanin binding antibody. J Nucl Med 49:52PGoogle Scholar
  97. Knapp FF, Mirzadeh S (1994) The continuing important role of radionuclide generator systems for nuclear medicine. J Nucl Med 21:1151–1165Google Scholar
  98. Knapp FF Jr (1998) Rhenium-188—a generator-derived radioisotope for cancer therapy. Can Biother Radiopharm 13:337–349Google Scholar
  99. Knapp FF Jr, Beets AL, Mirzadeh S, Guhlke S (1998a) Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of Technetium-99 m and Rhenium-188. In: Proceedings, international trends in radiopharmaceuticals for diagnosis and therapy, Lisbon, Portugal, Mar 30-Apr 3 1998Google Scholar
  100. Knapp FF Jr, Beets AL, Guhlke S, Biersack H-J, Giedd KN, Marboe C, Amols H, Weinberger J (1998b) Rhenium-188 liquid-filled balloons effectively inhibit restenosis in a swine coronary overstretch model—a simple new method bridging nuclear medicine and interventional cardiology. J Nucl Med 39:48PGoogle Scholar
  101. Knapp FF Jr, Beets AL, Guhlke S, Zamora PO, Bender H, Palmedo H, Biersack HJ (1997a) Development of the alumina-based Tungsten-188/Rhenium-188 generator and use of Rhenium-188-labeled radiopharmaceuticals for cancer treatment. Antican Res 17:1783–1796Google Scholar
  102. Knapp FF Jr, Guhlke S, Beets AL, Amols H, Weinberger J (1997b) Rhenium-188—attractive properties for introvascular brachytherapy for inhibition of coronary restenosis after PTCA. J Nucl Cardiol 4:S-118Google Scholar
  103. Knapp FF Jr, Guhlke S, Beets AL, Amols H, Weinberger J (1997c) Intraarterial irradiation with Rhenium-188 for inhibition of restenosis after PTCA—strategy and evaluation of species for rapid urinary excretion. J Nucl Med 38:124PGoogle Scholar
  104. Knapp FF Jr, Guhlke S, Beets AL, Lin WY, Stabin M, Amols H, Weinberger J (1999a) Endovascular beta irradiation for prevention of restenosis using solution radioisotopes: pharmacologic and dosimetric properties of Rhenium-188 compounds. Cardiovasc Rad Med 1:86–97Google Scholar
  105. Knapp FF Jr, Spencer R, Kropp J (2001) Intravascular radiation therapy with radioactive liquid-filled balloons for inhibition of restenosis after angioplasty—a new opportunity for nuclear medicine. J Nucl Med 42:1384–1387PubMedGoogle Scholar
  106. Knapp FF Jr, Spencer RH, Stabin M (1999b) Use of Rhenium-188 liquid-filled balloons for inhibition of corornary restenosis after PTCA—a new opportunity for nuclear medicine. “In: radionuclides for myocardium—current status and future aspects, Mediterra-Publishers, Athens, Greece, pp 61–72 (ISBN 960-85227-9-X)Google Scholar
  107. Knapp FF Jr, Turner JH, Padhy AK (2004) Issues associated with the use of the Tungsten-188/Rhenium-188 generator and concentrator system and preparation of Re-188 HDD: a report. World J Nucl Med 3:137–143Google Scholar
  108. Koo BK, Lee MM, Oh S, Park YB, Choi YS, Lee DS (2004) Effects of β-radiation with a 188Re-filled balloon catheter system on non-stented adjacent coronary artery segment. Int J Cardiol 96:73–77 (The “SPARE” Trial)Google Scholar
  109. Kotzerke J, Gabelmann J, Hanke H (2002) “Recurrent renal artery stenosis—endovascular brachytherapy with a Rhenium-188 filled balloon catheter”, Rofo Fortschr. Geg Rontgentr Neuen Bildgeb Verfahr 174:1176–1178Google Scholar
  110. Kotzerke J, Hanke H, Hoeher M (2000) Endovascular brachytherapy for the prevention of restenosis after angioplasty. Eur J Nucl Med 27:223–236PubMedGoogle Scholar
  111. Kresnik E, Mikosch P et al (2002) Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints. Nucl Med Commun 23:683–688PubMedGoogle Scholar
  112. Kropp J, Pinkert J, Wunderlich G, Knapp FF Jr (2003) Radiochemistry, evaluation and first clinical results in the treatment of oncologic diseases with Rhenium-188-labeled microspheres. In: Proceedings, the 11th mediterranean symposium on nuclear medicine and radiopharmaceuticals, Athens, Greece, 28–30 May, Mediterrea Pub., Athens (ISBN 960-86437-2-4); pp 157–166Google Scholar
  113. Krötz F, Schiele TM, Zahler S, König A, Rieber J, Kantlehner R, Pöllinger B, Dühmke E, Theisen K, Sohn HY, Klauss V (2002) Sustained platelet activation following intracoronary beta irradiation. Am J Cardiol 90:1381–1384Google Scholar
  114. Kumar A, Bal C, Srivastava DN, Thulkar SP, Sharma S, Acharya SK, Duttagupta S (2006a) Management of multiple intrahepatic recurrences after radiofrequency ablation of hepatocellular carcinoma with Rhenium-188-HDD-lipiodol. Eur J Gastroenterol Hepatol 18:219–223PubMedGoogle Scholar
  115. Kumar A, Bal CS, Srivastava DN, Acharya SK, Thulkar SP, Sharma S, Duttagupta S (2005) Transarterial radionuclide therapy with Re-188-HDD-lipiodol in case of unrespectable hepatocellular carcinoma with extensive portal vein thrombosis. Eur J Radiol 1–8Google Scholar
  116. Kumar A, Srivastava DN, Bal C (2006b) Management of postsurgical recurrence of hepatocellular carcinoma with Rhenium-188-HDD labeled iodized oil. J Vasc Interv Radiol 17:157–161PubMedGoogle Scholar
  117. Kumar A, Srivastava DN, Chau TT, Long HD, Bal C, Chandra P, le Chien T, Hoa NV, Thulkar S, Sharma S, le Tam H, Xuan TQ, Canh NX, Pant GS, Bandopadhyaya GP (2007) Inoperable hepatocellular carcinoma: transarterial 188Re HDD-Iodized oil for treatment—prospective multicentre clinical trial. Radiolo 243:509–519Google Scholar
  118. Kutzner J, Grimm W et al (1982) Yttrium-90-therapy of bone metastases. Dtsch Med Wochenschr 107:1360–1361PubMedGoogle Scholar
  119. Lam MGH, Bosma TB, van Rijk PP, Zoonenberg BA (2009a) 188Re-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: a phase i safety and toxicity study. Eur J Nucl Med Mol Imag 36:1425–1433Google Scholar
  120. Lam AS, De Klerk JM et al (2009b) Treatment of painful bone metastases in hormon-refractory prostate cancer with zoledrinic acid and samarium-153-ethylenediaminetetramethylphosphonic acid combined. J Pall Med 12:649–651Google Scholar
  121. Lambert B (2005a) Advantage of 188Re-radiopharmaceuticals in heptacellular cancer and liver metastases, reply to letter to the editor. J Nucl Med 46:1408Google Scholar
  122. Lambert B, Bacher K, Defreyne L, Van Vlierberghe H, Jeong JM, Wang RF, van Meerbeeck J, Smeets P, Troisi R, Thierens H, De Vos F, Van de Wiele C (2006a) 188Re-HDD/lipiodol therapy for hepatocellular carcinoma: an activity escalation study. Eur J Nucl Med 33:344–352Google Scholar
  123. Lambert B, Bacher K, Defryne L, Gemmel F, Van Vlierberghe H, Jeong JM, Dierckx RA, Van de Wiele C, Thierens H, De Vos F (2005b) 188Re-HDD/lipiodol therapy for hepatocellular carcinoma: a phase I clinical trial. J Nucl Med 46:60–66PubMedGoogle Scholar
  124. Lambert B, Backer K, Defreyne L (2009) Rhenium-188 based radiopharmaceuticals for treatment of liver tumors. Q J Nucl Med Imaging 53:305–310Google Scholar
  125. Lambert B, de Klerk JMH (2006) Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun 27:223–230PubMedGoogle Scholar
  126. Lambert B, Ridder LD, Vos FD, Slegers G, de Gelder V, de Wiele CV, Thierens H (2006b) Assessment of supra-additive effects of cytotoxic drugs and low dose rate irradiation in an in vitro model of hepatocellular carcinoma. Can J Physiol Pharmacol 84:1021–1028PubMedGoogle Scholar
  127. Lambert B, Van De Wiele C (2009) Selective internal radiation therapy of HCC and liver metastases: a locoregional or worldwide therapy? Q J Nucl Med 53:302–304Google Scholar
  128. Lambert B, Bacher K, et al. (2003) 188Re-lipiodol for locoregioneal treatment of hepatocellular carcinoma: a phase I study. Eur J Nucl Med 30(Suppl 2):S 219Google Scholar
  129. Lau WY, Ho S et al (1998) Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys 40:583–592PubMedGoogle Scholar
  130. Lau WY, Leung TW et al (1999) Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 353:797–801PubMedGoogle Scholar
  131. Lee YL, Chung JK, Shin JH, Kang JH, Jeong JM, Lee DS, Lee MC (2004) In vitro and in vivo properties of human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene. Thyroid 14:889–895PubMedGoogle Scholar
  132. Lee EB, Shin KC, Lee YJ, Cheon GJ, Jeong JM, Son MW, Song YW (2003) 188Re-tin-colloid as a new therapeutic agent for rheumatoid arthritis. Nucl Med Commun 24:689–696PubMedGoogle Scholar
  133. Lee JL, Lee DS, Kim KM, Yeo JS, Cheon GJ, Kim SK, Ahn JY, Jeong JM, Chung JK, Lee MC (2000) Dosimetry of Rhenium-188 diethylenetriamminepentaaceric acid for endovascular intra-balloon brachytherapy after corornayr angioplasty. Eur J Nucl Med 27:76–82PubMedGoogle Scholar
  134. Lee SW, Park SW, Hong MK, Kim YH, Han KH, Kim J, Park JH, Oh SJ, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2006) Incidence and predictors of late recurrence after beta-irradiation therapy with Re-188-MAG3-filled balloom for diffuse in-stent restenosis. Am Heart J 151:158–163PubMedGoogle Scholar
  135. Lee SW, Park SW, Hong MK, Kim YH, Han KH, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2005a) Comparison of angiographic and clinical outcomes between rotational atherectomy and cutting balloon angioplasty followed by radiation therapy with a Rhenium-188-mercaptoacetyltriglycine-filled balloon in the treatment of diffuse in-stent restenosis. Am Heart J 150:577–582PubMedGoogle Scholar
  136. Lee SW, Park SW, Hong MK, Lee JH, Kim YH, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2005b) Comparison of angiographic and clinical outcomes between rotational atherectomy versus balloon angioplasty followed by radiation therapy with a Rhenium-188-mercaptoacetyltriglycine-filled balloon in the treatment of diffuse in-stent restenosis. Int J Cardiol 102:179–185PubMedGoogle Scholar
  137. Lee SW, Park SW, Park DW, Lee SW, Kim SH, Jang JS, Jeong YH, Kim YH, Lee SC, Hong MK, Yun SC, Kim JJ, Park SJ (2007) Comparison of six-month angiographic and three-year outcomes after stirolimus-eluting stent implantation versus brachytherapy for bare metal in-stent restenosis. Am J Cardiol 100:425–430PubMedGoogle Scholar
  138. Lee YS, Jeong JM, Kim YJ, Chung JW, Park JH, Suh YG, Lee DS, Chung JK, Lee MC (2002) Synthesis of 188Re-labeled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun 23:237–242PubMedGoogle Scholar
  139. Leung TW, Lau WY et al (1995) Radiation pneumonitis after selective internal radiation treatment with intraarterial yttrium-90 microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 33:919–924PubMedGoogle Scholar
  140. Lewington VJ (1993) Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 20:66–74PubMedGoogle Scholar
  141. Lewington VJ, McEwan AJ et al (1991) A prospective, randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer 27:954–958PubMedGoogle Scholar
  142. Li P, Yu J, Cen G, Jiang X, Tand Z, Chen S, Jiang L, Tang L, Yin D (2006) Applied radioactivity in radiation synovectomy with 188Re-rhenium sulfide suspension. Nucl Med Commun 27:603–609PubMedGoogle Scholar
  143. Li S, Liu J, Zhang H, Tian, Wang J, Zheng X (2001) Rhenium-188 HEDP to treat painful bone metastases. J Clin Nucl Med 26:919–922Google Scholar
  144. Li P, Chen G et al (2004) Radiation synovectomy by 188Re-Sulfide in haemophilic synovitis. Haemophilia 10:422–427PubMedGoogle Scholar
  145. Liepe K (2010) Alpharadin, a 223Ra-based α-particle-emitting pharmaceutical for the treatment of bone metastases in patients with cancer. Curr Opin Investigat Drugs 10:346–358Google Scholar
  146. Liepe K, Brogsitter C, Leonhard J, Wunderlich G, Hliscs R, Pinkert J, Folprecht G, Kotzerke J (2007a) Feasibility of high activity Rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol 37:942–950PubMedGoogle Scholar
  147. Liepe K, Kotzerke J (2005) “Advantage of 188Re-radipharmaceuticals in heptacellular cancer and liver metastases”, letter to the editor. J Nucl Med 46:1407–1408PubMedGoogle Scholar
  148. Liepe K, Kropp J, Hliscs R, Runge R, Knapp FF Jr, Franke WG (2003a) Radiation dosimetry of Rhenium-188-HEDP in human prostate cancer skeletal metastases. J Nucl Med 44:953–960PubMedGoogle Scholar
  149. Liepe K, Kropp J, Runge R, Kotzerke J (2003b) Therapeutic efficacy of Rhenium-188-HEDP in human prostate cancer skeletal metastases. Brit J Can 89:625–629Google Scholar
  150. Liepe K, Runge R, Kotzerke J (2005a) The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Can Res Clin Oncol 131:60–66Google Scholar
  151. Liepe K, Kotzerke J (2007) A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun 28:623–630PubMedGoogle Scholar
  152. Liepe K, Faulhaber D, et al. (2010) Radiation pneumopathy (rat) following intravenous application of 188Re-labeled microspheres, work in progressGoogle Scholar
  153. Liepe K, Geidel HH et al (2009) Autoradiographic studies of rhenium-188-hydroxyethylidine diphosphonate in normal skeleton and osteoblastic bone metastases in a rat model of metastatic prostate cancer. Nucl Med Commun 30:693–699PubMedGoogle Scholar
  154. Liepe K, Zaknun JJ, et al. (2007) Radiosynovectomy using yttrium-90, phosphorus-32 and rhenium-188 colloids in rheumatoid arthritis. Eur J Nucl Med 34(Suppl.):476Google Scholar
  155. Liepe K, Zaknun JJ, et al. (2010b) Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids vs. corticoid instillation for rheumatoid arthritis of the knee, work in progressGoogle Scholar
  156. Liepe K, Kotzerke J et al (2005c) Advantage of 188Re-radiopharmaceuticals in hepatocellular cancer and liver metastases. J Nucl Med 46:1407–1408PubMedGoogle Scholar
  157. Liermann D, Bottcher HD, Kollath J, Schopohl B, Strasmann G, Strecker EP, Breddin KH (1994) Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries. Cardiovasc Intervent Radiol 17:12–16PubMedGoogle Scholar
  158. Lin CP, Lin WY, Hsieh BT, Ting G, Wang SJ, Yen TC, Knapp FF Jr, Yeh SJ (1999a) Effect of reaction conditions on preparation of Rhenium-188 hydroxyethylidene diphosphonate complexes. Nucl Med Biol 26:455–459PubMedGoogle Scholar
  159. Lin WY, Hsieh JF, Tsai SC, Yen TC, Wang SJ, Knapp FF Jr (2000a) A comprehensive study of thyroid and gastric uptake of 188Re-perrhenate in endovascular irradiation using liquid-filled balloons to prevent restenosis. Nucl Med Biol 27:83–87PubMedGoogle Scholar
  160. Lin WY, Lin CP, Hsieh BT, Tsai ZT, Yen TC, Wang SJ, Ting G, Yeh SJ, Knapp FF Jr (1997) Rhenium-188 HEDP: a new potential, generator-produced radiotherapeutic drug for bone metastases. Eur J Nucl Med 24:590–595PubMedGoogle Scholar
  161. Lin WY, Tsai SC, Hsieh BT, Lee TW, Ting G, Wang SJ (2000a) Evaluation of three Rhenium-188 candidates for intravascular radiation therapy with liquid-filled balloons to prevent restenosis. J Nucl Cardiol 37–42Google Scholar
  162. Lisic EC, Phillips M et al (2001) Synthesis of a new bisphosphonate acid ligand (SEDP) and preparation of a 188Re-(SN)SEDP bone seeking radiotracer. Nucl Med Biol 28:419–424PubMedGoogle Scholar
  163. Llovet JM, Real MI et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359:1734–1739PubMedGoogle Scholar
  164. Luo TY, Hsieh BT, Wang SJ, Lin WY, Lee TW, Shen LH, Su MJ (2004a) Preparation and biodistribution of Rhenium-188 ECD/lipiodol in rats following hepatic arterial injection. Nucl Med Biol 31:671–677PubMedGoogle Scholar
  165. Luo TY, Lo AR, Hseih BT, Lin WJ (2006) A design for automated preparation of highly concentrated 188Re-perrhenate solution. Appl Radiat Isot 65:21–25PubMedGoogle Scholar
  166. Luo TY, Tang IC, Wu YL, Hsu KL, Liu SW, Kung HC, Lai PS, Lin WJ (2009) Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl Med Biol 36:81–88PubMedGoogle Scholar
  167. Magram MY, Edelman MJ, Forero A, Meredith RF, Shen S, Stubbs JB, Rudoltz MS, Schlief R, Line BR (2003) A novel Rhenium-188 labeled somatostatin receptor (SSTR) targeting peptide, P2045, as potential targeting therapy for lung cancer. J Nucl Med 44:137PGoogle Scholar
  168. Mah K, Van Dyk J et al (1987) Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy. Int J Radiat Oncol Biol Phys 13:179–188PubMedGoogle Scholar
  169. Makker R, Whiting J, Li A, Hidehiko H, Fishbein MC, Knapp FF Jr, Litvack F, Eigler NL (2001) Effects of β–emitting liquid isotope (Rhenium-188) filled balloon in stented porcine coronaries: an angiographic, intravascular ultrasound and histomorphometric follow-up study. Circ 102:117–123Google Scholar
  170. Maxon HR, Schroder LE et al (1990) Re-186(Sn) HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer. Radiology 176:155–159PubMedGoogle Scholar
  171. Maxon HR, Schroder LE et al (1991) Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med 32:1877–1881PubMedGoogle Scholar
  172. Maxon HR, Schroder LE et al (1998) Rhenium-188(Sn) HEDP for treatment of osseous metastases. J Nucl Med 39:659–663PubMedGoogle Scholar
  173. Maxon HR, Deutsch EA et al (1988) Re-186(Sn) HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies. Radiology 166:501–507PubMedGoogle Scholar
  174. McEwan AJ (1998) Palliative therapy with bone seeking radiopharmaceuticals. Cancer Biother Radiopharm 13:413–426PubMedGoogle Scholar
  175. Meier DA, Brill DR et al (2002) Procedure guideline for therapy of thyroid disease with 131iodine. J Nucl Med 43:856–861PubMedGoogle Scholar
  176. Melendez-Alafort L, Nadali A, Zangoni E, Banzato A, Rondina M, Rosato A, Mazzi U (2009) Biokinetic and dosimetric studies of 188-Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocelluar carcinoma. Nucl Med Biol 36:693–701PubMedGoogle Scholar
  177. Miao Y, Owen N, Whitener D, Gallazzi F, Hoffman T, Quinn T (2002a) In vivo evaluation of 188Re-labeled alpha-melanocycte stimulating hormone peptide analogs for melanoma therapy. Int J Can 10:48–487Google Scholar
  178. Miao Y, Owen NK, Fischer DR, Hoffman TJ, Quinn TP (2005) Therapeutic efficacy of a 188Re-labeled α-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med 46:121–129PubMedGoogle Scholar
  179. Miao Y, Owen NK, Wittener D, Gallazzi F, Hoffman TJ, Quinn TP (2002b) In vivo evaluation of 188Re-labeled alpha-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Can 101:480–487Google Scholar
  180. Miao Y, Whitener D, Fang W, Owen NK, Chen J, Quinn TP (2003) Evaluation of the human melanoma targeting properties of radiolabeled α-melanocyte stimulating hormone peptide analogues. Bioconj Chem 14:1177–1184Google Scholar
  181. Mirzadeh S, Knapp FFJR (1996) Biomedical radionuclide generators systems. J Radioanalyt Nucl Chem 203:469–486Google Scholar
  182. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedGoogle Scholar
  183. Murray A, Simms MS, Schofield DP, Vincent RM, Denton G, Bishop MC, Prince MR, Pekins AC (2001) Production and characterization of 188Re-C595 antibody for radioimmunotherapy of transitional cell bladder cancer. J Nucl Med 42:726–732PubMedGoogle Scholar
  184. Nair N (1999) Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med 40:256–261PubMedGoogle Scholar
  185. Nakajo M, Kobayashi H et al (1988) Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J Nucl Med 29:1066–1077PubMedGoogle Scholar
  186. Nakamura H, Hashimoto T et al (1988) Iodized oil in the portal vein after arterial embolization. Radiology 167:415–417PubMedGoogle Scholar
  187. Nakamura T, Hanada K et al (1995) Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 136:1276–1284PubMedGoogle Scholar
  188. Nilsson S, Franzén L et al (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8:587–594PubMedGoogle Scholar
  189. Nilsson S, Larsen RH et al (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 15:4451–4459Google Scholar
  190. Oh SJ, Moon DH, Ha HJ, Park AW, Hong MK, Park SJ, Choi TH, Lim SM, Choi CW, Knapp FF Jr, Lee HK (2001) Synthesis of highly concentrated 188Re-MAG3 and automation for intracoronary radiation therapy. Appl Rad Isot 54:419–427Google Scholar
  191. Oh SJ, Moon DH, Lee WW, Park SW, Hong KK, Park SJ, Shin DI, Lee HK (2003) Automated preparation of 188Re-labeled radiopharmaceuticals for endovascular radiation therapy. Appl Radiat Isot 59:225–230PubMedGoogle Scholar
  192. Okuda K, Ohtsuki T et al (1985) Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 56:918–928PubMedGoogle Scholar
  193. Ong SY (2003) Neoadjuvant chemotherapy in the management of colorectal metastases: a review of the literature. Ann Acad Med Singapore 32:205–211PubMedGoogle Scholar
  194. O’Sullivan JM, Norman AR et al (2006) A phase 2 study of high-activity 186Re-HEDP with autologous peripheral blood stem cell transplant in progressive hormone-refractory prostate cancer metastatic to bone. Eur J Nucl Med Mol Imaging 33:1055–1061PubMedGoogle Scholar
  195. Padhy AJ, Bernal P, Buscombe RJ, Chau T, Chen SL, Divgi C, Jeong JM, Knapp FF Jr, Kumar A, Ogbac R, Pusuwan P, Raoul JL, Saw MM, Sereegotov E, Stare J, Sundram FX, Turner JH, Vidmar G, Zanzonica P (2007) Rhenium-188 lipiodol therapy of hepatocellular carcinoma: results of a multicentre-multinational study. World J Nucl Med 6:S-55–57Google Scholar
  196. Padhy AK, Dondi MA (2008) Report on the implementation aspects of the international atomic energy agency’s first doctoral coordinated research project, management of liver cancer using radionuclide methods with special emphasis on trans-arterial radio-conjugate therapy and internal dosimetry. Semin Nucl Med 38:S5–S12PubMedGoogle Scholar
  197. Pain therapeutics trial, Rheniumn-188-PT1-6D2 antibody in patients with metastatic melanoma. Pain Therapeutics, Inc.— identified—NCT00734188. Recruiting patients—Jan 2009–March 2010Google Scholar
  198. Palmedo H, Guhlke S, Bender H, Schoemich G, Gruenwald F, Knapp FF Jr, Biersack HJ (2000) Dose escalation study with Rhenium-188-HEDP in prostate cancer patients with osseous metastases. Eur J Nucl Med 27:123–130PubMedGoogle Scholar
  199. Palmedo H, Manka-Waluch A, Albers P, Schmidt W, Guhlke S, Reinhardt M, Ezziddin S, Joe A, Roedel R, Fimmers H, Knapp FF Jr, Biersack HJ (2003) Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase ii trial with the new, high-energy radiopharmaceutical Rhenium-188-HEDP. J Clin Oncol 21:2869–2875PubMedGoogle Scholar
  200. Pecher P (1942) Biological investigation with radioactive calcium and strontium. Preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Uni Calif Publ Pharmacol 2:117–149Google Scholar
  201. Pinkert J, Wunderlich G, Franke WG, Bergman R, Hiliscs R, Kropp J, Knapp FF Jr (1999) Re-188-labeled HSA microspheres for radioembolization. Eur J Nucl Med 26:1010Google Scholar
  202. Raoul JL, Boucher E, Rolland Y, Garin E (2010) Treatmnt of hepatocellualr carcinoma with intra-atrterial injection of radionuclides. Nat Rev Gastroenterol Hepatol 7:41–49PubMedGoogle Scholar
  203. Reske SN, Bunjes D, Buchmann I, Seitz U, Glatting G, Neumaier B, Kotzerke J, Buck A, Martin H, Doehner H, Begrmann L (2001) Targeted bone marrow ablation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 28:807–815PubMedGoogle Scholar
  204. Reynen K, Kockeritz U, Kropp J, Wunderlich G, Knapp FF Jr, Schmeisser A, Strasser RH (2004) Intracoronary radiotherapy with a Re-188 liquid-filled PTCA balloon system in in-stent restenosis: acute and long-term angiographic results, as well as 1-year clinical follow-up. Int J Cardiol 95:29–34PubMedGoogle Scholar
  205. Reynen K, Kropp J, Koeckerits U, Wunderlich G, Knapp FF, Schmeisser A, Strasser RH (2006) Intracoronary radiotherapy with a 188Rhenium liquid-filled angioplasty balloon system in in-stent restenosis: a single-center, prospective, randomized, placebo-controlled, double-blind evaluation. Coron Adtery Dis 17:371–377Google Scholar
  206. Ricke J, Wust P et al (2004) CT-guided interstitial brachytherapy of liver malignancies alone or in combination with thermal ablation: phase I-II results of a novel technique. Int J Radiat Oncol Biol Phys 58:1496–1505PubMedGoogle Scholar
  207. Robinson RG, Preston DF et al (1995) Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA 274:420–424PubMedGoogle Scholar
  208. Robinson RG, Blake GM et al (1989) Strontium-89: treatment results and kinetics in patients with painful metastatic prostate and breast cancer in bone. Radiographics 9:271–281PubMedGoogle Scholar
  209. Roesch F, Knapp FF Jr (2003) Radionuclide generators. In: Vertes A, Klencsar NS (eds) Handbook of nuclear chemistry, vol. 4 Chapter 3, Kluwer Academic Publishers, Amsterdam, pp 81–118Google Scholar
  210. Safavy A, Khazaeli MB et al (1997) Synthesis of bombesin analogues for radiolabeling with rhenium-188. Cancer 80(12 Suppl):2354–2359PubMedGoogle Scholar
  211. Samaratunga RC, Thomas SR et al (1995) A monte carlo simulation model for radiation dose to metastatic skeletal tumor from rhenium-186(Sn)-HEDP. J Nucl Med 36:336–350PubMedGoogle Scholar
  212. Savio E, Gaudiano J, Robles A, Martinez G, Leon A, Veredra S, Muniz S, Hermida JC, Knapp FF Jr (2001) Rhenium-188-HEDP: pharmacokinetic characterization in osseous metastatic patients with two levels of radiopharmaceutial dose. BMC Nucl Med 1:1471–1485Google Scholar
  213. Savio E, Ures MC, Zeledon P, Triondade V, Paolino A, Mockford V, Malanga A, Fernandez M, Gaudiano J (2004) 188Re radiopharmaceuticals for radiosynovectomy: evaluation and comparison of tin colloid, hydroxyapatite and tin-ferric hydroxide macroaggregates. BioMed Central 4:1Google Scholar
  214. Schaart DR, Bos AJ, Winkelman AJ, Clarijs MC (2002) The radial depth-dose distribution of a 188W/188Re beta line source measured with novel, ultra-thin TLDs in a PMMA phantom: comparison with Monte Carlo simulations. Phys Med Biol 47:3605–3627PubMedGoogle Scholar
  215. Schneider P, Farahati J et al (2005) Radiosynovectomy in rheumatology, orthopedics, and hemophilia. J Nucl Med 46(Suppl 1):48S–54SPubMedGoogle Scholar
  216. Schopohl B, Liermann D, Jülling L, Heyd R, Strassmann G, Bauersachs R, Schulte- Huermann D, Rahl CG, Menegold KH, Kollath J, Böttcher HD (1996). Ir-192 endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiation Oncology Biol Phys 36:835–840Google Scholar
  217. Schuelen H, Eigler N, Whiting JS, Haubner R, Hausleiter J, Dirhinger J, Kastrati A, Schwaiger M, Schoemig A (2001) Usefulness of intracoronary brachytherapy for in-stent restenosis with a 188Re liquid-filled balloon. Amer J Cardiol 87:463–466Google Scholar
  218. Schwartz JD, Schwartz M et al (2002) Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol 3:593–603PubMedGoogle Scholar
  219. Schweitzer AD, Rakesh V, Revskaya E, Datta A, Casadevall A, Dadchova E (2007) Computational model predicts effective delivery of 188Re-labeled melanin-binding antibody to metastatic melanoma tumors with wide range of melanin concentrations. Melanoma Res 17:291–303PubMedGoogle Scholar
  220. Sedda AF, Rossi G, Cipriani C, Carozzo AM, Donati P (2008) Dermatological high-dose rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clin Exp Dermatol 33:745–749PubMedGoogle Scholar
  221. Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511PubMedGoogle Scholar
  222. Shin JH, Lee SK, Song HY, Kim JS, Choe H, Kim EH, Lee IG, Kim TH, Kim EY, Woo CW, Nah KH (2008) The effects of 188Re-filled balloon dilation following bare stent palcement in a rabbitt oesophageal model. Br J Radiol 81:413–421PubMedGoogle Scholar
  223. Shin JH, Song HY, Moon DH, Oh SJ, Kim JS, Kim TH, Choi WC, Suh JY, Kang W, Seol HY, Lee JH (2004) Reduction of tissue hyperplasia with a Rhenium-188 MAG3-filled balloon: preliminary study in a Canine Urethral model. J Vasc Interven Radiol 15:737–743Google Scholar
  224. Shin JH, Song HY, Moon DH, Oh SJ, Kim TH, Lim JO (2006) Rhenium-188 mercaptoacetyltriglycine-filled balloon dilation in the treatment of recurrent urethral strictures: initial experience with five patients. J Vasc Intervent Radiol 17:1471–1477Google Scholar
  225. Silberstein EB (1993) The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol 20(Suppl 2):10–21PubMedGoogle Scholar
  226. Smeland S, Erikstein B et al (2003) Role of strontium-89 as adjuvant to palliative external beam radiotherapy is questionable: results of a double-blind randomized study. Int J Radiat Oncol Biol Phys 56:1397–1404PubMedGoogle Scholar
  227. Soerdjbalie-Maikoe V, Pelger RC et al (2002) Strontium-89 (Metastron) and the bisphosphonate olpadronate reduce the incidence of spinal cord compression in patients with hormone-refractory prostate cancer metastatic to the skeleton. Eur J Nucl Med Mol Imaging 29:494–498PubMedGoogle Scholar
  228. Soroa VE, del Huerto Velazquez Espeche M, et al. (2005) Effects of radiosynovectomy with P-32 colloid therapy in hemophilia and rheumatoid arthritis. Cancer Biother Radiopharm 20:344–348Google Scholar
  229. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546PubMedGoogle Scholar
  230. Stabin MG, Konijnenberg M, Knapp FF Jr, Spener RH (2000) Monte Carlo modeling of radiation dose distributions in intravascular radiation therapy. Med Phys 27:1088–1092Google Scholar
  231. Sundram F, Chaur TCM, Onkhuudai P, Bernal P, Padhy AK (2004) Preliminary results of transarterial Rhenium-188 HDD lipiodol treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med 31:250–257Google Scholar
  232. Sundram FF, Yu SW, Jeong JM, Somnesan S, Premaraj J, Saw MM, Tang BS (2001) Rhenium-188-TDD-Lipiodol in treatment of inoperable primary hepatocelular carcinoma—a case report. Ann Acad Med Singapore 30:542–545PubMedGoogle Scholar
  233. Sundram FX, Yu S, Somanesan S, Jeong JM, Bernal P, Osorio M, Esguerra R, Chau TCM, Long HD, Hoa NV, Huay NDS, Onkhuudai P, Lamjav T, Zanzonica P, Padhy AK, Saw MM, Rooland Y, Knapp FF Jr (2002) Phase I Study of Transarterial Rhenium-188-HDD Lipiodol in Treatment of Inoperable Primary Hepatocellular Cacinoma - A Multicentre Evaluation. World J Nucl Med 1:5–11Google Scholar
  234. Sundram F, Chau TC, et al. (2003) Preliminary results of transarterial rhenium-188 HDD lipiodol in the treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med Mol ImagingGoogle Scholar
  235. Swailem FM, Krishnamurthy GT et al (1998) In vivo tissue uptake and retention of Sn-117 m(4 +)DTPA in a human subject with metastatic bone pain and in normal mice. Nucl Med Biol 25:279–287PubMedGoogle Scholar
  236. Syeda B, Siostrzonek P, Schmid R, Wexberg P, Kirisits C, Denk S, Beran G, Khorsand A, Lang I, Pokrajac B, Potter R, Glogar D (2002) Geographical miss during intracoronary irradiation: impact on restenosis and determination of required safety margin length. J Am Coll Cardiol 40:1225–1231PubMedGoogle Scholar
  237. Tian JH, Zhang JM et al (1999) Multicentre trial on the efficacy and toxicity of single-dose samarium-153-ethylene diamine tetramethylene phosphonate as a palliative reatment for painful skeletal metastases in China. Eur J Nucl Med 26:2–7PubMedGoogle Scholar
  238. Trotti A, Byhardt R et al (2000) Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 47:13–47PubMedGoogle Scholar
  239. Tu SM, Millikan RE et al (2001) Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357:336–341PubMedGoogle Scholar
  240. Turner JH, Martindale AA et al (1989) Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med 15:784–795PubMedGoogle Scholar
  241. Ures MC, Savio E, Malanga A, Fernandez M, Paolino A, Guadiano J (2002) Physico-chemical characterization and biological evaluation of 188-Rhenium colloids for radiosynovectomy. BioMed Central 2:1–19Google Scholar
  242. van Rensburg AJ, Alberts AS et al (1998) Quantifying the radiation dosage to individual skeletal lesions treated with samarium-153-EDTMP. J Nucl Med 39:2110–2115PubMedGoogle Scholar
  243. Vogl TJ, Straub R et al (2004) Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy–local tumor control rate and survival data. Radiology 230:450–458PubMedGoogle Scholar
  244. Waksman R, Ajani AE, White RL, Pinnow E, Mehran R, Bui AB, Deible R, Gruberg L, Mintz GS, Satler LF, Pichard AD, Kent KM, Lindsay J (2001) Two-year follow-up after beta and gamma intracoronary radiation therapy for patients with diffuse in-stent restenosis. Am J Cardiol 88:425–428PubMedGoogle Scholar
  245. Wang SJ, Lin WY, Chen MN, Chen JT, Ho WL, Hsieh BT, Huang H, Shen LH, Ting G, Knapp FF Jr (2001a) Histologic study of effects of radiation synovectomy with Rhenium-188 microsphere. Nucl Med Biol 28:727–732PubMedGoogle Scholar
  246. Wang SJ, Lin WY, Chen MN, Chi CS, Chen JT, Ho WL, Hsieh BT, Shen LH, Tsai ZT, Ting G, Mirzadeh S, Knapp FF Jr (1998a) The efficacy of intratumoral injection of Rhenium-188 microsphere in an animal model with hepatoma. J Nucl Med 39:1752–1756PubMedGoogle Scholar
  247. Wang SJ, Lin WY, Chen MN, Hsieh BT, Huang H, Shen LH, Ting G (2001b) Histologic study of the effects of radiation synovectomy with Rhenium-188 microsphere. Nucl Med Biol 28:709–717Google Scholar
  248. Wang SJ, Lin WY et al (1995) Rhenium-188 sulphur colloid as a radiation synovectomy agent. Eur J Nucl Med 22:505–507PubMedGoogle Scholar
  249. Wang SJ, Lin WY et al (1998b) Rhenium-188 microspheres: a new radiation synovectomy agent. Nucl Med Commun 19:427–433PubMedGoogle Scholar
  250. Weinberger J, Giedd KN, Simon AD, Marboe C, Knapp FF Jr, Trichter F, Amols H (1999) Radioactive beta-emitting solution-filled balloon treatment prevents porcine coronary restenosis. Cardiovasc Rad Med 1:252–256Google Scholar
  251. Weinberger J, Knapp FF Jr (1999) Use of liquid-filled balloons for coronary irradiation, chapter 45, In: Waksman R (ed) Vascular Brachytherapy, 2nd edn. Futura Publishing Co., Inc., Armonk pp 521–535 (ISBN 0-87993-4131)Google Scholar
  252. Weinberger J, Knapp FF Jr (2002) Use of liquid-filled balloons for coronary irradiation.” In: Waksman R (ed.) Vascular Brachytherapy, 3rd edn. Futura Publishing Co., Inc., Armonk, pp 753–790Google Scholar
  253. Wiesinger B, Farkas E, Kehlbach R, Bantleon R, Werner M, Wiskirchen J (2009) Impact of rhenium-188, gemcitabine and 5-fluorouracil on cholangiocelluar carcinoma cells: an in vitro study. Cardiovasc Interven Radiol 4:737–744Google Scholar
  254. Woehrle J, Nusser T, Krause BJ, Kochs M, Habig T, Mottaghy FM, Kestler HA, Hombach V, Reske SN (2007) Patients with in-stent restenosis: comparison of intracorornary beta-brachytherapy using a Rhenium-188 filled balloon catheter with the polymer-based paclitaxel-eluting taxus-express stent. Nukelamed 46:185–191Google Scholar
  255. Wohlfrom M, Kotzerke J, Kamena J, Eble M, Hess B, Wohrle J, Reske SN, Hombach V, Hanke H, Hoher M (2001) Endovascular irradiation with the liquid beta-emitter Rhenium-188 to reduce restenosis after experimental wall injury. Cardiovasc Res 49:169–176PubMedGoogle Scholar
  256. Wohlgemuth WA, Leissner G, Wegenmair H, Bohndorf K, Kirchof K (2008) Endovascular brachytherapy in the femoropopliteal segment using 192Ir and 188Re. Cardiovasc Intervent Radiol 31:698–708PubMedGoogle Scholar
  257. Wohrle J, Krause BJ, Nusser T, Kochs M, Hoher M (2006a) Repeat intracoronary beta-brachytherapy using a Rhenium-188-filled balloon catheter for recurrent restenosis in patients who failed intarcoronary radiation therapy. Cardiovasc Revasc Med 7:2–6PubMedGoogle Scholar
  258. Wohrle J, Krause BJ, Nusser T, Mottaghy FM, Habig T, Kochs M, Kotzerke J, Reske SN, Hombach V, Hoher M (2006b) “Intracorornary beta-brachytherapy using a Rhenium-188-filled balloon catheter in restenotic lesions of native coronary arteries and venous bypass grafts. Eur J Nucl Med Mol Imaging 33:1314–1320PubMedGoogle Scholar
  259. Wunderlich G, Pinkert J, Franke WG, Knapp FF Jr, Kropp J (2000a) Preparation and biodistribution of Rhenium-188-labeled albumin microspheres: a promising new agent for endoradiotherapy of tumors. Appl Radiat Isot 52:63–68PubMedGoogle Scholar
  260. Wunderlich G, Hartmann H, Andreef M, Kotzerke J (2008) A semi-automated system for concentration of Rhenium-188 for radiopharmaceutical applications. Appl Radiat Isot 66:1876–1880PubMedGoogle Scholar
  261. Wunderlich G, Pinkert J, Franke WG, Knapp FF Jr, Kropp J (2000b) Preparation and biodistribution of Rhenium-188-labeled albumin microspheres: a promising new agent for endoradiotherapy of tumors. Appl Radiat Isot 52:63–68PubMedGoogle Scholar
  262. Young JY, Rhee TK et al (2007) Radiation dose limits and liver toxicities resulting from multiple yttrium-90 radioembolization treatments for hepatocellular carcinoma. J Vasc Interventional Radiol 18:1375–1382Google Scholar
  263. Zaknun JJ, Liepe K et al (2007a) Blood and urine biokinetics of rhenium-188-tin and phosphorus-32 colloids in radiosynovectomy. Europ J Nucl Med 34(Suppl):476Google Scholar
  264. Zaknun JJ, Liepe K, et al. (2007) Managment of haemarthrosis applying radiosynovectomy in haemophilia patients with emphasis on developing countries. Eur J Nucl Med 34(Suppl.):P439Google Scholar
  265. Zamora PO, Guhlke S, Bender H, Diek-mann D, Rhodes BA, Biersack HJ, Knapp FF Jr (1996) Experimental radiotherapy of receptor-positive human adenocarcinoma with 188Re-RC-160, a directly-radiolabeled somatostatin analog. Internat J Can 65:214–220Google Scholar
  266. Zanzonico PB, Divgi C (2008) Patient-specific radiation dosimetry for radionuclide therapy of liver tumors with intrahepatic artery Rhenium-188 Lipiodol. Semin Nucl Med 38:S30–S39PubMedGoogle Scholar
  267. Zenz T, Glatting G, Schlenk RF, Buchmann I, Doehner H, Reske SN, Bunjes D (2006) Targeted marrow irradiation with radioactivity labeled anti-CD66 monoclonal antibody prior to allogenic stem cell transplantation for patients with Leukemia: results of a phase I-II study. Haematologica 91:285–286PubMedGoogle Scholar
  268. Zhang H, Tian M, Li S, Liu J, Tanada S, Endo K (2003) Rhenium-188-HEDP therapy for the palliation of pain due to ossesous metastases in lung cancer patients. Can Biother Radiopharm 18:719–726Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Nuclear Medicine ProgramOak Ridge National Laboratory (ORNL)Oak RidgeUSA
  2. 2.Department of Nuclear MedicineCTK-HospitalCottbusGermany
  3. 3.Department of Nuclear MedicineHospital KasselKasselGermany

Personalised recommendations