Advertisement

Cyclotron-Based Radiopharmaceuticals for Nuclear Medicine Therapy

  • Jacques Barbet
  • Mickaël Bourgeois
  • Jean-François Chatal
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

New radionuclides, used for targeted radionuclide therapy, can be produced by cyclotrons dedicated to nuclear medicine and which have become common. Among beta particle emitting radionuclides, copper-67 has favorable physical and biochemical properties. Its halflife of 2.58 days is well matched to the pharmacokinetics of F(ab’)2 antibody fragments and the energy of emitted electrons corresponds to a short path length that fits the size of disseminated clusters of malignant cells. But production of this radionuclide requires a high energy/high intensity cyclotron which limits its availability. Scandium-47 has favorable physical properties but also requires high proton energy cyclotron which explains its poor availability. Among alpha-emitting radionuclides which seem to be optimal for killing of isolated tumor cells due to the short path length and high linear energy transfer (LET) of emitted alpha particles, astatine-211 has attracted much interest because of a longer half-life (7.2 h) than that of bismuth-213 or bismuth-212 which have also been tested in preclinical and clinical studies. Actinium-225 which can be produced by proton irradiation of radium-226 and bismuth-213 have been proposed years ago for targeted radionuclide therapy. Actinium-225 has been presented as an « atomic nanogenerator » due to a cascade of radioactive daughters emitting four alpha particles per actinium-225 atom. Bismuth-213 has been used one decade ago for labeling of a humanized anti-CD33 antibody in a phase I clinical study in patients with acute myelogenous antibody. Finally terbium-149 with a half-life of 4.1 h is another alternative alpha-emitting radionuclide and has been used in a few preclinical studies. Radionuclides which emit Auger electrons such as indium-111 may be highly toxic if delivered in or close to nucleus of tumor cells. Thus today there is a real need for production of innovative radionuclides by cyclotrons to improve efficacy of targeted radionuclide therapy.

Keywords

Alpha Particle Acute Myelogenous Leukemia Linear Energy Transfer Emit Alpha Particle Cyclotron Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson WT, Strand M (1985) Stability, targeting, and biodistribution of scandium-46- and gallium-67-labeled monoclonal antibody in erythroleukemic mice. Cancer Res 45(5):2154–2158PubMedGoogle Scholar
  2. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacobsson L, Jensen H, Lindegren S, Palm S, Hultborn R (2009) Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2–a phase I study. J Nucl Med 50(7):1153–1160PubMedCrossRefGoogle Scholar
  3. Anthony LB, Woltering EA, Espenan GD, Cronin MD, Maloney TJ, McCarthy KE (2002) Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med 32(2):123–132PubMedCrossRefGoogle Scholar
  4. Apostolidis C, Molinet R, McGinley J, Abbas K, Möllenbeck J, Morgenstern A (2005) Cyclotron production of Ac-225 for targeted alpha therapy. Appl Rad Isot 62(3):383–387CrossRefGoogle Scholar
  5. Barbet J, Kraeber-Bodéré F, Chatal JF (2008) What can be expected from nuclear medicine tomorrow? Cancer Biother Radiopharm 23(4):483–504PubMedCrossRefGoogle Scholar
  6. Beck R, Seidl C, Pfost B, Morgenstern A, Bruchertseifer F, Baum H, Schwaiger M, Senekowitsch-Schmidtke R (2007) 213Bi-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci 98(8):1215–1222PubMedCrossRefGoogle Scholar
  7. Beyer GJ, Miederer M, Vranjes-Duric S et al (2004) Targeted alpha therapy (TAT) in vivo. Direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med 31:547–554CrossRefGoogle Scholar
  8. Bischof Delaloye A, Delaloye B, Buchegger F et al (1997) Comparison of copper-67- and iodine-125-labeled anti-CEA monoclonal antibody biodistribution in patients with colorectal tumors. J Nucl Med 38:847–853Google Scholar
  9. Boswell CA, Regino CA, Baidoo KE, Wong KJ, Bumb A, Xu H, Milenic DE, Kelley JA, Lai CC, Brechbiel MW (2008) Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconj Chem 19(7):1476–1484CrossRefGoogle Scholar
  10. Chen P, Wang J, Hope K, Jin L, Dick J, Cameron R, Brandwein J, Minden M, Reilly RM (2006) Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med 47(5):827–836PubMedGoogle Scholar
  11. Dahle J, Borrebaek J, Jonasdottir TJ, Hjelmerud AK, Melhus KB, Bruland ØS, Press OW, Larsen RH (2007) Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood 110(6):2049–2056PubMedCrossRefGoogle Scholar
  12. Davis IA, Kennel SJ (1999) Radioimmunotherapy using vascular targeted 213Bi: the role of tumor necrosis factor alpha in the development of pulmonary fibrosis. Clin Cancer Res 5(10 Suppl):3160s–3164sPubMedGoogle Scholar
  13. DeNardo SJ, DeNardo GL (1983) Tumor therapy with radioactive labeled antitumor antibodies. In: Moloy PJ, Nicolson G (eds) Cellular oncology: new approaches in biology, diagnosis and treatment. Praeger Press, New York, pp 282–292Google Scholar
  14. DeNardo SJ, DeNardo GL, Kukis DL et al (1999) 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med 40:302–310PubMedGoogle Scholar
  15. Elgqvist J, Andersson H, Jensen H, Kahu H, Lindegren S, Warnhammar E, Hultborn R (2010) Repeated intraperitoneal alpha-radioimmunotherapy of ovarian cancer in mice. J Oncol 2010:394913PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fjälling M, Andersson P, Forssell-Aronsson E, Grétarsdóttir J, Johansson V, Tisell LE, Wängberg B, Nilsson O, Berg G, Michanek A, Lindstedt G, Ahlman H (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med 37(9):1519–1521PubMedGoogle Scholar
  17. Frantz VK, Quimby EH, Evans TC (1948) Radioactive iodine studies of functional thyroid carcinoma. Radiology 51(4):532–552PubMedCrossRefGoogle Scholar
  18. Fullerton NE, Boyd M, Ross SC, Pimlott SL, Babich J, Kirk D, Zalutsky MR, Mairs RJ (2005) Comparison of radiohaloanalogues of meta-iodobenzylguanidine (MIBG) for a combined gene- and targeted radiotherapy approach to bladder carcinoma. Med Chem 1(6):611–618PubMedCrossRefGoogle Scholar
  19. Gardin I, Faraggi M, Le Guludec D, Bok B (1999) Cell irradiation caused by diagnostic nuclear medicine procedures: dose heterogeneity and biological consequences. Eur J Nucl Med 26(12):1617–1626PubMedCrossRefGoogle Scholar
  20. Gasser G, Tjioe L, Graham B et al (2008) Synthesis, copper (II) complexation, 64Cu-labeling, and bioconjugation of a new bis(2-pyridylmethyl) derivative of 1, 4, 7-triazacyclononane. Bioconj Chem 19:719–730CrossRefGoogle Scholar
  21. Geerlings MW, Kaspersen FM, Apostolidis C, van der Hout R (1993) The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy. Nucl Med Commun 14(2):121–125PubMedCrossRefGoogle Scholar
  22. Griffiths GL, Govindan SV, Sgouros G, Ong GL, Goldenberg DM, Mattes MJ (1999) Cytotoxicity with Auger electron-emitting radionuclides delivered by antibodies. Int J Cancer 81(6):985–992PubMedCrossRefGoogle Scholar
  23. Grünberg J, Novak-Hofer I, Honer M et al (2005) In vivo evaluation of 177Lu- and 67/64Cu-labeled recombinant fragments of antibody chCE7 for radioimmunotherapy and PET imaging of L1-CAM-positive tumors. Clin Cancer Res 11:5112–5120PubMedCrossRefGoogle Scholar
  24. Haddad F, Ferrer L, Guertin A, Carlier T, Michel N, Barbet J, Chatal JF (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur J Nucl Med Mol Imaging 35:1377–1387PubMedCrossRefGoogle Scholar
  25. Jaggi JS, Kappel BJ, McDevitt MR, Sgouros G, Flombaum CD, Cabassa C, Scheinberg DA (2005) Efforts to control the errant products of a targeted in vivo generator. Cancer Res 65(11):4888–4895PubMedCrossRefGoogle Scholar
  26. Juran S, Walther M, Stephan H et al (2009) Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper (II) radioisotopes. Bioconj Chem 20:347–359CrossRefGoogle Scholar
  27. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, Ballangrud AM, Hamacher KA, Ma D, Humm JL, Brechbiel MW, Molinet R, Scheinberg DA (2002) Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100(4):1233–1239PubMedGoogle Scholar
  28. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 49(12):1541–1549PubMedCrossRefGoogle Scholar
  29. Kozak RW, Atcher RW, Gansow OA, Friedman AM, Hines JJ, Waldmann TA (1986) Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci U S A 83(2):474–478PubMedCentralPubMedCrossRefGoogle Scholar
  30. Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, Ghadimi BM, Wegener WA, Kovacs J, Horak ID, Becker H, Goldenberg DM (2005) Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 23(27):6763–6770PubMedCrossRefGoogle Scholar
  31. Limouris GS, Dimitropoulos N, Kontogeorgakos D, Papanikolos G, Koutoulidis V, Hatzioannou A, Mourikis D, Lyra M, Dimitriou P, Stravaka A, Vlahos L (2005) Evaluation of the therapeutic response to In-111-DTPA octreotide-based targeted therapy in liver metastatic neuroendocrine tumors according to CT/MRI/US findings. Cancer Biother Radiopharm 20(2):215–217PubMedCrossRefGoogle Scholar
  32. Lindegren S, Frost S, Bäck T, Haglund E, Elgqvist J, Jensen H (2008) Direct procedure for the production of 211At-labeled antibodies with an epsilon-lysyl-3-(trimethylstannyl) benzamide immunoconjugate. J Nucl Med 49(9):1537–1545PubMedCrossRefGoogle Scholar
  33. Lundh C, Lindencrona U, Schmitt A, Nilsson M, Forssell-Aronsson E (2006) Biodistribution of free 211At and 125I- in nude mice bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother Radiopharm 21(6):591–600PubMedCrossRefGoogle Scholar
  34. Majkowska A, Neves M, Antunes I, Bilewicz A (2009) Complexes of low energy beta emitters 47Sc and 177Lu with zoledronic acid for bone pain therapy. Appl Radiat Isot 67(1):11–13PubMedCrossRefGoogle Scholar
  35. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294PubMedCrossRefGoogle Scholar
  36. McDevitt MR, Ma D, Lai LT et al (2001) Tumor therapy with targeted atomic nanogenerators. Science 294:1537–1540PubMedCrossRefGoogle Scholar
  37. McLean JR, Blakey DH, Douglas GR, Bayley J (1989) The Auger electron dosimetry of indium-111 in mammalian cells in vitro. Radiat Res 119(2):205–218PubMedCrossRefGoogle Scholar
  38. Meyer GJ, Walte A, Sriyapureddy SR, Grote M, Krull D, Korkmaz Z, Knapp WH (2010) Synthesis and analysis of 2-[211At]-l-phenylalanine and 4-[211At]-l-phenylalanine and their uptake in human glioma cell cultures in vitro. Appl Radiat Isot 68(6):1060–1065PubMedCrossRefGoogle Scholar
  39. Miederer M, McDevitt MR, Borchardt P et al (2004) Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin Cancer Res 10:6985–6992PubMedCrossRefGoogle Scholar
  40. Mirzadeh S, Mausner LF, Srivastava SC (1986) Production of no-carrier added 67Cu. Int J Rad Appl Instrum A 37(1):29–36PubMedCrossRefGoogle Scholar
  41. Nilsson S, Larsen RH, Fossa SD et al (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11:4451–4459PubMedCrossRefGoogle Scholar
  42. Novak-Hofer I, Schubiger PA (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29(6):821–830PubMedCrossRefGoogle Scholar
  43. O’Donnell RT, DeNardo SJ, Miers LA, Lamborn KR, Kukis DL, DeNardo GL, Meyers FJ (2002) Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate 50(1):27–37PubMedCrossRefGoogle Scholar
  44. Petrich T, Helmeke HJ, Meyer GJ, Knapp WH, Pötter E (2002) Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imaging 29(7):842PubMedCrossRefGoogle Scholar
  45. Pfost B, Seidl C, Autenrieth M, Saur D, Bruchertseifer F, Morgenstern A, Schwaiger M, Senekowitsch-Schmidtke R (2009) Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb defeats human bladder carcinoma in xenografted nude mice. J Nucl Med 50(10):1700–1708PubMedCrossRefGoogle Scholar
  46. Pozzi OR, Zalutsky MR (2007) Radiopharmaceutical chemistry of targeted radiotherapeutics, part 3: alpha-particle-induced radiolytic effects on the chemical behavior of (211)At. J Nucl Med 48(7):1190–1196PubMedCrossRefGoogle Scholar
  47. Rogers BE, Anderson CJ, Connett JM et al (1996) Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconj Chem 7:511–522CrossRefGoogle Scholar
  48. Sgouros G (2008) Alpha-particles for targeted therapy. Adv Drug Deliv Rev 60(12):1402–1406PubMedCrossRefGoogle Scholar
  49. Sharkey RM, Goldenberg DM (2008) Use of antibodies and immuno conjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 60(12):1407–1420PubMedCentralPubMedCrossRefGoogle Scholar
  50. Supiot S, Faivre-Chauvet A, Couturier O, Heymann MF, Robillard N, Kraeber-Bodéré F, Morandeau L, Mahé MA, Chérel M (2002) Comparison of the biologic effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer 94(4 Suppl):1202PubMedCrossRefGoogle Scholar
  51. Supiot S, Gouard S, Charrier J, Apostolidis C, Chatal JF, Barbet J, Davodeau F, Cherel M (2005) Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res 11(19 Pt 2):7047s–7052sPubMedCrossRefGoogle Scholar
  52. Vaidyanathan G, Affleck DJ, Bigner DD, Zalutsky MR (2003) N-succinimidyl 3-[211At]astato-4-guanidinomethylbenzoate: an acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At. Nucl Med Biol 30(4):351–359PubMedCrossRefGoogle Scholar
  53. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2007) Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des 13(1):3–16PubMedCrossRefGoogle Scholar
  54. Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, Provencher-Bolliger A, Reubi JC, Maecke HR (2011) Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res 71(3):1009–1018PubMedCrossRefGoogle Scholar
  55. Yordanov AT, Garmestani K, Zhang M, Zhang Z, Yao Z, Phillips KE, Herring B, Horak E, Beitzel MP, Schwarz UP, Gansow OA, Plascjak PS, Eckelman WC, Waldmann TA, Brechbiel MW (2001) Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac. Nucl Med Biol 28(7):845–856PubMedCrossRefGoogle Scholar
  56. Zalutsky MR, Narula AS (1988) Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int J Rad Appl Instrum A 39(3):227–232PubMedCrossRefGoogle Scholar
  57. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49(1):30–38PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zhang M, Yao Z, Garmestani K, Axworthy DB, Zhang Z, Mallett RW, Theodore LJ, Goldman CK, Brechbiel MW, Carrasquillo JA, Waldmann TA (2002) Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood 100(1):208–216PubMedCrossRefGoogle Scholar
  59. Zhang Z, Zhang M, Garmestani K, Talanov VS, Plascjak PS, Beck B, Goldman C, Brechbiel MW, Waldmann TA (2006) Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25. Blood 108(3):1007PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jacques Barbet
    • 1
    • 2
  • Mickaël Bourgeois
    • 1
    • 2
  • Jean-François Chatal
    • 2
  1. 1.Nantes-Angers Cancer Research Center, Inserm, University of NantesNantesFrance
  2. 2.GIP Arronax, University of NantesNantes-Saint-HerblainFrance

Personalised recommendations