Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2732 Accesses

Abstract

Breast cancer is a leading cause of death in women. Advance imaging, including radioisotope-based methods, plays a crucial role in the management of these patients. Current guidelines recommend 18-fluorodeoxyglucose PET (or PET/CT) imaging in patients with advanced disease or with suspected tumor recurrence. However, the development of breast-specific PET scanners is expanding the indications to surgical planning and to assist in the diagnosis of breast cancer. Today, these are applications where MRI is the main imaging modality. For this reason combined PET/MRI imaging, if developed as a small parts breast specific scanner, is likely to make dramatic changes in our imaging of breast cancer. This is particularly true when we consider the development of new tracers capable of in vivo receptor imaging, and advanced techniques to measure perfusion and hypoxia. We review the application of whole-body PET and PET/CT imaging in breast cancer, and the role of one of the dedicated PET breast scanners that is also approved for radioisotope guided biopsy. The chapter ends with a synopsis of new tracers and an introduction to breast MRI that speculates on the value of PET/MRI in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler L, Narayanan D, Gammage L, Beylin D, Keen R (2007) Quantitative improvement in breast lesion detectability on delayed images using high resolution positron emission mammography. J Nucl Med 48(S2):369P

    Google Scholar 

  • Adler L, Weinberg I, Beylin D, Zavarzin V, Yarnall S, Stepanov P, et al. (2005) Positron Emission Mammography: High-Resolution Biochemical Breast Imaging. Technol Cancer Res Trea 4(1):55-60

    Google Scholar 

  • Anderson WF, Matsuno R (2006) Breast Cancer Heterogeneity: A Mixture of At Least Two Main Types. J Natl Cancer Inst 98(14):948−951

    PubMed  CAS  Google Scholar 

  • Alberini J, Lerebours F, Wartski M, Fourme E, Stanc EL, Gontier E et al (2009) 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer 115(21):5038–5047

    PubMed  Google Scholar 

  • Arlinghaus LR, Li X, Levy M, Smith D, Welch EB, Gore JC et al (2010) Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy. J Oncol [Internet] [cited 5 Jan 2011]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20953332

  • Avril N, Adler L (2007) F-18 Fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin North Am 45(4):645–657

    PubMed  Google Scholar 

  • Avril N, Dose J, Jänicke F, Ziegler S, Römer W, Weber W et al (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 88(17):1204–1209

    PubMed  CAS  Google Scholar 

  • Dose-Schwarz J, Tiling R, Avril-Sassen S, Mahner S, Lebeau A, Weber C, Schwaiger M, Jänicke F, Untch M, Avril N (2010) Assessment of residual tumour by FDG-PET: conventional imaging and clinical examination following primary chemotherapy of large and locally advanced breast cancer. Br J Cancer 102(1):35–41

    PubMed  CAS  Google Scholar 

  • Avril N, Rosé CA, Schelling M, Dose J, Kuhn W, Bense S et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18(20):3495–3502

    PubMed  CAS  Google Scholar 

  • Avril N, Sassen S, Roylance R (2009) Response to therapy in breast cancer. J Nucl Med 50(Suppl 1):55S–63

    Google Scholar 

  • Barnes DM, Harris WH, Smith P, Millis RR, Rubens RD (1996) Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer 74(9):1445–1451

    PubMed  CAS  Google Scholar 

  • Bartella L, Smith CS, Dershaw DD, Liberman L (2007) Imaging breast cancer. Radiol Clin North Am 45(1):45–67

    PubMed  Google Scholar 

  • Baruah BP, Goyal A, Young P, Douglas-Jones AG, Mansel RE (2010) Axillary node staging by ultrasonography and fine-needle aspiration cytology in patients with breast cancer. Br J Surg 97(5):680−683

    PubMed  CAS  Google Scholar 

  • Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters. Cancer 112(5):995–1000

    PubMed  CAS  Google Scholar 

  • Been LB, Elsinga PH, de Vries J, Cobben DC, Jager PL, Hoekstra HJ et al (2006) Positron emission tomography in patients with breast cancer using (18)F-3’-deoxy-3’-fluoro-l-thymidine ((18)F-FLT)-a pilot study. Eur J Surg Oncol 32(1):39–43

    PubMed  CAS  Google Scholar 

  • Bellon JR, Livingston RB, Eubank WB, Gralow JR, Ellis GK, Dunnwald LK et al (2004) Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer (LABC). Am J Clin Oncol 27(4):407–410

    PubMed  Google Scholar 

  • Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH et al (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR Imaging in presurgical planning for the ipsilateral breast. Radiology 258(1):59–72

    PubMed  Google Scholar 

  • Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12(4):309–323

    PubMed  Google Scholar 

  • Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ et al (2006) Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295(14):1658–1667

    PubMed  CAS  Google Scholar 

  • Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353(17):1784–1792

    PubMed  CAS  Google Scholar 

  • Bezwoda WR, Esser JD, Dansey R, Kessel I, Lange M (1991) The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer 68(4):867–872

    PubMed  CAS  Google Scholar 

  • Bhujwalla ZM, Artemov D, Aboagye E, Ackerstaff E, Gillies RJ, Natarajan K et al (2001) The physiological environment in cancer vascularization, invasion and metastasis. Novartis Found Symp 240:23–38; discussion 38–45, 152–153

    Google Scholar 

  • Bowen SL, Wu Y, Chaudhari AJ, Fu L, Packard NJ, Burkett GW et al (2009) Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med 50(9):1401–1408

    PubMed  Google Scholar 

  • Bristow A, Agrawal A, Evans A, Burrell H, Cornford E, James J et al (2008) Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study. Breast 17(1):98–103

    PubMed  CAS  Google Scholar 

  • Cancer Facts and Figures (2010) http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-and-figures-2010. Accessed 20 Sept 2010

  • Carkaci S, Macapinlac HA, Cristofanilli M, Mawlawi O, Rohren E, Gonzalez Angulo AM et al (2009) Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med 50(2):231–238

    PubMed  Google Scholar 

  • Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB et al (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7(2):122–192

    PubMed  CAS  Google Scholar 

  • Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379

    PubMed  CAS  Google Scholar 

  • Couturier O, Jerusalem G, N’Guyen J, Hustinx R (2006) Sequential positron emission tomography using [18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res 12(21):6437–6443

    PubMed  CAS  Google Scholar 

  • Damle N, Bal C, Bandopadhyaya G, Kumar L, Kumar P (2007) Role of 18F Fluoride PET/CT in the detection of bone metastases in breast cancer patients. J Nucl Med 48(Suppl 2):142P

    Google Scholar 

  • Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36(10):1766–1774

    PubMed  CAS  Google Scholar 

  • Dijkers EC, de Vries EG, Kosterink JG, Brouwers AH, Lub-de Hooge MN (2008) Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des 14(31):3348–3362

    PubMed  CAS  Google Scholar 

  • Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50(6):974–981

    PubMed  CAS  Google Scholar 

  • Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87(5):586–592

    PubMed  CAS  Google Scholar 

  • Dirisamer A, Halpern BS, Flöry D, Wolf F, Beheshti M, Mayerhoefer ME et al (2010) Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 73(2):294–299

    PubMed  Google Scholar 

  • Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46(7):1144–1150

    Google Scholar 

  • Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’Hern R et al (2006) Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol 17(5):818–826

    PubMed  CAS  Google Scholar 

  • Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25(23):3440–3447

    PubMed  Google Scholar 

  • Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM et al (2008) Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 26(27):4449–4457

    PubMed  CAS  Google Scholar 

  • Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50(Suppl 1):106S–121

    Google Scholar 

  • Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J et al (2000) Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a southwest oncology group study. Int J Cancer 89(2):111–117

    PubMed  CAS  Google Scholar 

  • Erguvan-Dogan B, Whitman GJ, Kushwaha AC, Phelps MJ, Dempsey PJ (2006) BI-RADS-MRI: a primer. AJR Am J Roentgenol 187(2):W152–W160

    PubMed  Google Scholar 

  • Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G et al (2004) Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol 183(2):479–486

    PubMed  Google Scholar 

  • Eubank WB, Mankoff DA, Takasugi J, Vesselle H, Eary JF, Shanley TJ et al (2001) 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 19(15):3516–3523

    PubMed  CAS  Google Scholar 

  • Evans WP, Lee CH, Monsees BS, Monticciolo DL, Rebner M, Berlin L et al (2010) U.S. Preventive services task force: the unbalanced view. Radiology 257(1):297

    PubMed  Google Scholar 

  • Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367

    PubMed  Google Scholar 

  • Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    PubMed  Google Scholar 

  • Fogelman I (2005) Osteoblastic bone metastases in breast cancer: is not seeing believing? Eur J Nucl Med Mol Imaging 32(11):1250–1252

    PubMed  Google Scholar 

  • Fueger BJ, Weber WA, Quon A, Crawford TL, Allen-Auerbach MS, Halpern BS et al (2005) Performance of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol 7(5):369–376

    PubMed  Google Scholar 

  • Gene Expression Profiling of Breast Cancer to Select Women for Adjuvant Chemotherapy (2010) http://www.bcbs.com/blueresources/tec/vols/22/22_13.html. Accessed 21 Sept 2010

  • Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743

    PubMed  CAS  Google Scholar 

  • Goethals I, Hanssens S, Kortbeek K, Smeets P, Van Belle S, Ham H (2010) Support for Warburg’s hypothesis using dynamic 18F-FDG PET in oncology. Eur J Nucl Med Mol Imaging 37(4):833

    PubMed  Google Scholar 

  • Grant DG (1972) Tomosynthesis: a three-dimensional radiographic imaging technique. IEEE Trans Biomed Eng 19(1):20–28

    PubMed  CAS  Google Scholar 

  • Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474

    Google Scholar 

  • Haug AR, Schmidt GP, Klingenstein A, Heinemann V, Stieber P, Priebe M et al (2007) F-18-fluoro-2-deoxyglucose positron emission tomography/computed tomography in the follow-up of breast cancer with elevated levels of tumor markers. J Comput Assist Tomogr 31(4):629–634

    PubMed  Google Scholar 

  • Hendrick RE (2010) Radiation doses and cancer risks from breast imaging studies1. Radiology 257(1):246–253

    PubMed  Google Scholar 

  • Heusner T, Freudenberg LS, Kuehl H, Hauth EAM, Veit-Haibach P, Forsting M et al (2008a) Whole-body PET/CT-mammography for staging breast cancer: initial results. Br J Radiol 81(969):743–748

    PubMed  Google Scholar 

  • Heusner TA, Kuemmel S, Umutlu L, Koeninger A, Freudenberg LS, Hauth EA et al (2008b) Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 49(8):1215–1222

    PubMed  Google Scholar 

  • Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME et al (2009) Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging 36(10):1543–1550

    PubMed  CAS  Google Scholar 

  • Hicks RJ, Dorow D, Roselt P (2006) PET tracer development—a tale of mice and men. Cancer Imaging 6:S102–S106

    PubMed  Google Scholar 

  • Hodgson NC, Gulenchyn KY (2008) Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 26(5):712–720

    PubMed  Google Scholar 

  • Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50(11):1820–1827

    PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    PubMed  CAS  Google Scholar 

  • Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ (1999) Comparative breast tumor imaging and comparative in vitro metabolism of 16alpha [18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol 26(1):123−130

    PubMed  CAS  Google Scholar 

  • Judy CO, Kross B, Ramasubramanian S, Banta LE, Kinahan PE, Champley K et al (2008) The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol 53(3):637–653

    PubMed  Google Scholar 

  • Juergens KU, Weckesser M, Stegger L, Franzius C, Beetz M, Schober O et al (2006) Tumor staging using whole-body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules? Eur Radiol 16(5):1131–1137

    Google Scholar 

  • Kalinyak J, Kassab R, Payne S, Luo W, Narayanan D, Yarnall SA (2008) Clinical PET guided breast biopsy system: from bench to bedside. J Nucl Med 49(S1):411P

    Google Scholar 

  • Kamel EM, Wyss MT, Fehr MK, von Schulthess GK, Goerres GW (2003) [18F]-Fluorodeoxyglucose positron emission tomography in patients with suspected recurrence of breast cancer. J Cancer Res Clin Oncol 129(3):147–153

    PubMed  Google Scholar 

  • Katzenellenbogen JA, Mathias CJ, vanBrocklin HF, Brodack JW, Welch MJ (1993) Titration of the in vivo uptake of 16 alpha-[18F]fluoroestradiol by target tissues in the rat:competition by tamoxifen, and implications for quantitating estrogen receptors in vivo and the use of animal models in receptor-binding radiopharmaceutical development. Nucl Med Biol 20(6):735−745

    PubMed  CAS  Google Scholar 

  • Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347

    PubMed  Google Scholar 

  • King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976

    PubMed  CAS  Google Scholar 

  • Kopans DB, Berlin L, Hall FM (2010) The U.S. Preventive services task force guidelines are not supported by the scientific evidence. Radiology 257(1):294–295

    PubMed  Google Scholar 

  • Kopans DB (2010a) Re: “Saving lives: mammograms, breast cancer, and health insurance reform”. J Am Coll Radiol 7(7):545; author reply 545–546

    Google Scholar 

  • Kopans DB (2010b) The recent US preventive services task force guidelines are not supported by the scientific evidence and should be rescinded. J Am Coll Radiol 7(4):260–264

    PubMed  Google Scholar 

  • Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJ (2007) Clinical production, stability studies and PET imaging with 16-alpha-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci 10(2):256s–265s

    PubMed  CAS  Google Scholar 

  • Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med 46(11):1819–1824

    PubMed  Google Scholar 

  • Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14(9):2584–2589

    PubMed  CAS  Google Scholar 

  • Kwee TC, Takahara T, Ochiai R, Koh D, Ohno Y, Nakanishi K et al (2010) Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 51(10):1549–1558

    PubMed  Google Scholar 

  • Le-Petross CH, Bidaut L, Yang WT (2008) Evolving role of imaging modalities in inflammatory breast cancer. Semin Oncol 35(1):51–63

    PubMed  Google Scholar 

  • Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D et al (2010) Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7(1):18–27

    PubMed  Google Scholar 

  • Lee JH, Rosen EL, Mankoff DA (2009a) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 1—overview, detection, and staging. J Nucl Med 50(4):569–581

    PubMed  Google Scholar 

  • Lee JH, Rosen EL, Mankoff DA (2009b) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2—response to therapy, other indications, and future directions. J Nucl Med 50(5):738–748

    PubMed  Google Scholar 

  • Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37(6):451–461

    PubMed  Google Scholar 

  • Lee YT (1982) Variability of steroid receptors in multiple biopsies of breast cancer: effect of systemic therapy. Breast Cancer Res Treat 2(2):185–193

    PubMed  CAS  Google Scholar 

  • Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L et al (2007) MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356(13):1295–1303

    PubMed  CAS  Google Scholar 

  • Levine PH, Veneroso C (2008) The epidemiology of inflammatory breast cancer. Semin Oncol 35(1):11–16

    PubMed  Google Scholar 

  • Liu C, Shen Y, Lin C, Yen R, Kao C (2002) Clinical impact of [(18)F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels: a preliminary report. Jpn J Clin Oncol 32(7):244–247

    PubMed  Google Scholar 

  • Livingston RB, Hart JS (1977) The clinical applications of cell kinetics in cancer therapy. Annu Rev Pharmacol Toxicol 17:529–543

    PubMed  CAS  Google Scholar 

  • Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167(2):127–145

    PubMed  CAS  Google Scholar 

  • Lousa P, Martins M, Matela N, Mendes P, Moura R, Nobre J et al (2006) Design and evaluation of the clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci 53(1):71–77

    Google Scholar 

  • Lu X, Luo W, Kalinyak J (2010) Radiation dose reduction for personalized breast PET imaging. J Nucl Med 51(S2):358

    Google Scholar 

  • MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P (2009) clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 50(10):1666–1675

    PubMed  Google Scholar 

  • MacDonald L, Luo W, Lu X, Wang C, Rogers J (2010) TH-D-201B-09: low dose lesion contrast on PEM Flex Solo II. Med Phys 37(6):3473

    Google Scholar 

  • MacDonald L (2010) WE-B-204C-01: postron emission mammography. Med Phys 37(6):3416

    Google Scholar 

  • Magnetic Resonance Imaging (MRI) (2010) Practice guidelines and technical standards—american college of radiology http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/mri.asx. Accessed 5 Jan 2011

  • Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ et al (2002) Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 43(4):500–509

    PubMed  Google Scholar 

  • Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44(11):1806–1814

    PubMed  Google Scholar 

  • Mankoff DA, Eubank WB (2006) Current and future use of positron emission tomography (PET) in breast cancer. J Mammary Gland Biol Neoplasia 11(2):125–136

    PubMed  Google Scholar 

  • Mankoff DA, Peterson LM, Tewson TJ, Link JM, Gralow JR, Graham MM et al (2001) [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 42(4):679–684

    PubMed  CAS  Google Scholar 

  • Marshall E (2010) Public health. Brawling over mammography. Science 327(5968):936–938

    PubMed  CAS  Google Scholar 

  • Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF et al (2006) Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 47(9):1440–1446

    PubMed  Google Scholar 

  • McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ et al (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531

    PubMed  CAS  Google Scholar 

  • Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101(25):9393–9398

    PubMed  CAS  Google Scholar 

  • Mercier G, Slanetz P, Kornguth P (2010a) Positron emission mammography vs. digital mammography—what do women prefer? J Nucl Med 51(S2):1198

    Google Scholar 

  • Mercier GA, Slanetz PJ, Kornguth PJ (2010b) Does positron emission mammography result in a lower call back rate than digital screening mammography? Abstract Book: 24th Annual Northeast Regional Scientific Meeting of the Society of Nuclear Medicine. Oct 22:Poster #8

    Google Scholar 

  • Milani M, Harris AL (2008) Targeting tumour hypoxia in breast cancer. Eur J Cancer 44(18):2766–2773

    PubMed  CAS  Google Scholar 

  • Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169(1):45–48

    PubMed  CAS  Google Scholar 

  • Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–6487

    PubMed  CAS  Google Scholar 

  • Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, et al (2010) Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol 28(19):3154−3159

    PubMed  Google Scholar 

  • Moy L, Noz ME, Jr GQM, Melsaethe A, Deans AE, Murphy-Walcott AD et al (2010) Role of fusion of prone FDG-PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J [Internet]. [cited 2010 Apr 28] Available from: http://dx.doi.org/10.1111/j.1524-4741.2010.00927.x

  • Moy L, Ponzo F, Noz ME, Maguire GQ, Murphy-Walcott AD, Deans AE et al (2007) Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 48(4):528

    PubMed  Google Scholar 

  • Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH (2000) Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med 41(11):1851–1858

    PubMed  CAS  Google Scholar 

  • Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32(11):1253–1258

    PubMed  Google Scholar 

  • Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL (2005) CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology 237(2):627–634

    PubMed  Google Scholar 

  • NCCN Breast Cancer Guidelines Updated: SLNB and PET/CT Are Highlights (2010) http://www.medscape.com/viewarticle/718398?src=rss. Accessed 19 Mar 2010

  • NCCN Clinical Practice Guidelines in Oncology (2010) http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed 13 Oct 2010

  • NCCN Invasive Breast Cancer Clinical Practice Guidelines (2007) J Natl Compr Cancer Netw (JNCCN) 5:246

    Google Scholar 

  • O’Connor M, Li H, Rhodes D, Hruska C, Vetter R (2010) Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast in a screening environment. J Nucl Med 51(S2):240

    Google Scholar 

  • Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T et al (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22(8):875–879

    PubMed  CAS  Google Scholar 

  • Oude Munnink TH, Korte MA, Nagengast WB, Timmer-Bosscha H, Schroder CP, Jong JR et al (2010) (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur J Cancer 46(3):678–84

    Google Scholar 

  • Oude Munnink TH, Nagengast WB, Brouwers AH, Schröder CP, Hospers GA, Lub-de Hooge MN et al (2009) Molecular imaging of breast cancer. Breast 18(Suppl 3):S66–73

    Google Scholar 

  • Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69

    PubMed  CAS  Google Scholar 

  • Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695

    PubMed  CAS  Google Scholar 

  • Pan L, Han Y, Sun X, Liu J, Gang H (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136(7):1007−1022

    PubMed  CAS  Google Scholar 

  • Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, et al (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18(21):3651−3664

    PubMed  CAS  Google Scholar 

  • Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374

    PubMed  Google Scholar 

  • Petrén-Mallmin M, Andréasson I, Ljunggren O, Ahlström H, Bergh J, Antoni G et al (1998) Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol 27(2):72–76

    PubMed  Google Scholar 

  • Pio BS, Park CK, Pietras R, et al (2006) Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36−42

    PubMed  Google Scholar 

  • Podoloff DA, Advani RH, Allred C, Benson AB, Brown E, Burstein HJ et al (2007) NCCN task force report: positron emission tomography (PET)/computed tomography (CT) scanning in cancer. J Natl Compr Canc Netw 5 (Suppl 1):S1–S22; quiz S23–22

    Google Scholar 

  • Podoloff DA, Ball DW, Ben-Josef E, Benson AB, Cohen SJ, Coleman RE et al (2009) NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 7(Suppl 2):S1–S26

    PubMed  Google Scholar 

  • Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O (2006) The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer 107(11):2545–2551

    PubMed  Google Scholar 

  • Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252

    PubMed  CAS  Google Scholar 

  • Rasbridge SA, Gillett CE, Seymour AM, Patel K, Richards MA, Rubens RD et al (1994) The effects of chemotherapy on morphology, cellular proliferation, apoptosis and oncoprotein expression in primary breast carcinoma. Br J Cancer 70(2):335–341

    PubMed  CAS  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    PubMed  CAS  Google Scholar 

  • Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and Breast Cancer Imaging. Radiographics 27(Suppl 1):S215–S229

    Google Scholar 

  • Ross E, Beylin D, Yarnall S, Keen R, Sawyer K, Van Geffen J et al (2005) Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer. Am J Surg 190(4):628–632

    PubMed  Google Scholar 

  • Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372

    PubMed  Google Scholar 

  • Saad A, Kanate A, Sehbai A, Marano G, Hobbs G, Abraham J (2008) Correlation among [18F]fluorodeoxyglucose positron emission tomography/computed tomography, cancer antigen 27.29, and circulating tumor cell testing in metastatic breast cancer. Clin Breast Cancer 8(4):357–361

    PubMed  CAS  Google Scholar 

  • Sacks A, Subramaniam R, Hayim M, Ozonoff A, Mercier G (2010) Value of FDG PET/CT and Tc-99 m MDP bone scan in initial staging of skeletal metastases in patients with breast cancer. In: Abstract Book RSNA, Chicago, IL, USA: 2010 http://rsna2010.rsna.org/search/search.cfm?action-add&filter=Author&value=101672. Accessed 29 Dec 2010

  • Scheidhauer K, Walter C, Seemann M (2004) FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging 31:S70–S79

    PubMed  Google Scholar 

  • Savelli G, Maffioli L, Maccauro M, De Maccauro E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 45(1):27−37

    PubMed  CAS  Google Scholar 

  • Schelling M, Avril N, Nährig J, Kuhn W, Römer W, Sattler D et al (2000) Positron emission tomography using [18F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695

    PubMed  CAS  Google Scholar 

  • Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV, Kahn S et al (2010) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging http://www.ncbi.nlm.nih.gov/pubmed/20871992. Accessed 25 Oct 2010

  • Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 27(4):535–541

    PubMed  Google Scholar 

  • Sekido Y, Umemura S, Takekoshi S, Suzuki Y, Tokuda Y, Tajima T et al (2003) Heterogeneous gene alterations in primary breast cancer contribute to discordance between primary and asynchronous metastatic/recurrent sites: HER2 gene amplification and p53 mutation. Int J Oncol 22(6):1225–1232

    PubMed  CAS  Google Scholar 

  • Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N (2008) Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. [Erratum appears in Clin Nucl Med. 2008 May 3(5):329]. Clin Nucl Med 33(2):97-101

    PubMed  Google Scholar 

  • Siggelkow W, Zimny M, Faridi A, Petzold K, Buell U, Rath W (2003) The value of positron emission tomography in the follow-up for breast cancer. Anticancer Res 23(2C):1859–67

    Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    PubMed  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    PubMed  CAS  Google Scholar 

  • Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F et al (2000) Positron emission tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18(8):1676–1688

    PubMed  CAS  Google Scholar 

  • Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47(5):793–796

    PubMed  CAS  Google Scholar 

  • Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31(5):720–724

    PubMed  Google Scholar 

  • Solomayer EF, Becker S, Pergola-Becker G, Bachmann R, Kramer B, Vogel U et al (2006) Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat 98(2):179–184

    PubMed  CAS  Google Scholar 

  • Souvatzoglou M, Buck A, Schmidt S, Quante S, Herrmann K, Scheidhauer K et al (2008) PET/CT for restaging breast cancer—impact on patient management and patient outcome. J Nucl Med Meet Abstr 49(MeetingAbstracts):18P

    Google Scholar 

  • Spataro V, Price K, Goldhirsch A, Cavalli F, Simoncini E, Castiglione M et al (1992) Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The international breast cancer study group (formerly Ludwig Group). Ann Oncol 3(9):733–740

    PubMed  CAS  Google Scholar 

  • Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB et al. (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9(8):913−921

    PubMed  Google Scholar 

  • Suarez M, Perez-Castejon MJ, Jimenez A, Domper M, Ruiz G, Montz R et al (2002) Early diagnosis of recurrent breast cancer with FDG-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med 46(2):113–121

    PubMed  CAS  Google Scholar 

  • Tafra L (2007) Positron emission tomography (PET) and mammography (PEM) for breast cancer: importance to surgeons. Ann Surg Oncol 14(1):3–13

    PubMed  Google Scholar 

  • Tateishi U, Gamez C, Dawood S, Yeung HWD, Cristofanilli M, Macapinlac HA (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247(1):189–196

    PubMed  Google Scholar 

  • Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P (1999) Interactions of 16alpha-[18F]fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol 26(8):905−913

    PubMed  CAS  Google Scholar 

  • Thompson CJ, Murthy K, Weinberg IN, Mako F (1994) Feasibility study for positron emission mammography. Med Phys 21(4):529–538

    PubMed  CAS  Google Scholar 

  • Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207(3):767–774

    PubMed  CAS  Google Scholar 

  • Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M et al (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45(11):1829–1837

    PubMed  CAS  Google Scholar 

  • Uematsu T, Kasami M, Yuen S (2009) Comparison of FDG PET and MRI for evaluating the tumor extent of breast cancer and the impact of FDG PET on the systemic staging and prognosis of patients who are candidates for breast-conserving therapy. Breast Cancer 16(2):97–104

    PubMed  Google Scholar 

  • Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M et al (2005) Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. Am J Roentgenol 184(4):1266–1273

    Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Google Scholar 

  • Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206

    PubMed  Google Scholar 

  • Veit-Haibach P, Antoch G, Beyer T, Stergar H, Schleucher R, Hauth EA, et al (2007) FDG-PET CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy. Brit J Radiol 80(955):508-515

    PubMed  CAS  Google Scholar 

  • Veronesi P, Berrettini A, Paganelli G, Veronesi U, De Cicco C, Galimberti VE et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18(3):473–478

    PubMed  CAS  Google Scholar 

  • Wahl RL, Siegel BA, Coleman RE, Gatsonis CG (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET study group. J Clin Oncol 22(2):277–285

    PubMed  Google Scholar 

  • Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11(11):2101–2111

    PubMed  CAS  Google Scholar 

  • Wang X, Koch S (2009) Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol 38(4):156–169

    PubMed  Google Scholar 

  • Webster DJ, Bronn DG, Minton JP (1978) Estrogen receptor levels in multiple biopsies from patients with breast cancer. Am J Surg 136(3):337–338

    PubMed  CAS  Google Scholar 

  • Weinstein S, Rosen M (2010) Breast MR imaging: current indications and advanced imaging techniques. Radiol Clin North Am 48(5):1013–1042

    PubMed  Google Scholar 

  • Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 10(3):25

    Google Scholar 

  • WHO | Cancer (2010) http://www.who.int/mediacentre/factsheets/fs297/en/index.html. Accessed 19 April 2010

  • Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118−145

    PubMed  CAS  Google Scholar 

  • Williams HT, Smith S (2005) FDG PET and SPECT of bone metastases in breast cancer. Am J Roentgenol 185(6):1651-a-1653

    Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52(6):1592–1597

    PubMed  CAS  Google Scholar 

  • Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC (2002) Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 128(6):325–328

    PubMed  CAS  Google Scholar 

  • Yang W, Le-Petross H, Macapinlac H, Carkaci S, Gonzalez-Angulo A, Dawood S et al (2008) Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat 109(3):417–426

    PubMed  CAS  Google Scholar 

  • Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4 hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha [18F]fluoro-17beta-estradiol. J Med Chem 8(20):6366−6378

    Google Scholar 

  • Zasadny KR, Tatsumi M, Wahl RL (2003) FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers. Eur J Nucl Med Mol Imaging 30(2):274–280

    PubMed  CAS  Google Scholar 

  • Zavarzin V, Weinberg IN, Stepanov PY, Beylin D, Lauckner K, Doss M et al (2003) Positron emission mammography: initial clinical results. Ann Surg Oncol 10(1):86–91

    PubMed  Google Scholar 

  • Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A (2005) Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer 93(5):552–556

    PubMed  CAS  Google Scholar 

  • Zujewski J, Chow C, Jones E, Chang V, Berg W, Frank J et al (1996) Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry. Eur J Nucl Med Mol Imaging 23(7):804–806

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Mercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mercier, G.A., Roy, FN., Bénard, F. (2012). Breast Cancer. In: Peller, P., Subramaniam, R., Guermazi, A. (eds) PET-CT and PET-MRI in Oncology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_636

Download citation

  • DOI: https://doi.org/10.1007/174_2012_636

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01138-2

  • Online ISBN: 978-3-642-01139-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics