Breast Cancer

  • Gustavo A. Mercier
  • Felix-Nicolas Roy
  • François Bénard
Part of the Medical Radiology book series (MEDRAD)


Breast cancer is a leading cause of death in women. Advance imaging, including radioisotope-based methods, plays a crucial role in the management of these patients. Current guidelines recommend 18-fluorodeoxyglucose PET (or PET/CT) imaging in patients with advanced disease or with suspected tumor recurrence. However, the development of breast-specific PET scanners is expanding the indications to surgical planning and to assist in the diagnosis of breast cancer. Today, these are applications where MRI is the main imaging modality. For this reason combined PET/MRI imaging, if developed as a small parts breast specific scanner, is likely to make dramatic changes in our imaging of breast cancer. This is particularly true when we consider the development of new tracers capable of in vivo receptor imaging, and advanced techniques to measure perfusion and hypoxia. We review the application of whole-body PET and PET/CT imaging in breast cancer, and the role of one of the dedicated PET breast scanners that is also approved for radioisotope guided biopsy. The chapter ends with a synopsis of new tracers and an introduction to breast MRI that speculates on the value of PET/MRI in breast cancer.


Breast Cancer Sentinel Lymph Node Biopsy National Comprehensive Cancer Network National Comprehensive Cancer Network Inflammatory Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler L, Narayanan D, Gammage L, Beylin D, Keen R (2007) Quantitative improvement in breast lesion detectability on delayed images using high resolution positron emission mammography. J Nucl Med 48(S2):369PGoogle Scholar
  2. Adler L, Weinberg I, Beylin D, Zavarzin V, Yarnall S, Stepanov P, et al. (2005) Positron Emission Mammography: High-Resolution Biochemical Breast Imaging. Technol Cancer Res Trea 4(1):55-60Google Scholar
  3. Anderson WF, Matsuno R (2006) Breast Cancer Heterogeneity: A Mixture of At Least Two Main Types. J Natl Cancer Inst 98(14):948−951PubMedGoogle Scholar
  4. Alberini J, Lerebours F, Wartski M, Fourme E, Stanc EL, Gontier E et al (2009) 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer 115(21):5038–5047PubMedGoogle Scholar
  5. Arlinghaus LR, Li X, Levy M, Smith D, Welch EB, Gore JC et al (2010) Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy. J Oncol [Internet] [cited 5 Jan 2011]. Available from:
  6. Avril N, Adler L (2007) F-18 Fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin North Am 45(4):645–657PubMedGoogle Scholar
  7. Avril N, Dose J, Jänicke F, Ziegler S, Römer W, Weber W et al (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 88(17):1204–1209PubMedGoogle Scholar
  8. Dose-Schwarz J, Tiling R, Avril-Sassen S, Mahner S, Lebeau A, Weber C, Schwaiger M, Jänicke F, Untch M, Avril N (2010) Assessment of residual tumour by FDG-PET: conventional imaging and clinical examination following primary chemotherapy of large and locally advanced breast cancer. Br J Cancer 102(1):35–41PubMedGoogle Scholar
  9. Avril N, Rosé CA, Schelling M, Dose J, Kuhn W, Bense S et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18(20):3495–3502PubMedGoogle Scholar
  10. Avril N, Sassen S, Roylance R (2009) Response to therapy in breast cancer. J Nucl Med 50(Suppl 1):55S–63Google Scholar
  11. Barnes DM, Harris WH, Smith P, Millis RR, Rubens RD (1996) Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer 74(9):1445–1451PubMedGoogle Scholar
  12. Bartella L, Smith CS, Dershaw DD, Liberman L (2007) Imaging breast cancer. Radiol Clin North Am 45(1):45–67PubMedGoogle Scholar
  13. Baruah BP, Goyal A, Young P, Douglas-Jones AG, Mansel RE (2010) Axillary node staging by ultrasonography and fine-needle aspiration cytology in patients with breast cancer. Br J Surg 97(5):680−683PubMedGoogle Scholar
  14. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters. Cancer 112(5):995–1000PubMedGoogle Scholar
  15. Been LB, Elsinga PH, de Vries J, Cobben DC, Jager PL, Hoekstra HJ et al (2006) Positron emission tomography in patients with breast cancer using (18)F-3’-deoxy-3’-fluoro-l-thymidine ((18)F-FLT)-a pilot study. Eur J Surg Oncol 32(1):39–43PubMedGoogle Scholar
  16. Bellon JR, Livingston RB, Eubank WB, Gralow JR, Ellis GK, Dunnwald LK et al (2004) Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer (LABC). Am J Clin Oncol 27(4):407–410PubMedGoogle Scholar
  17. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH et al (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR Imaging in presurgical planning for the ipsilateral breast. Radiology 258(1):59–72PubMedGoogle Scholar
  18. Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12(4):309–323PubMedGoogle Scholar
  19. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ et al (2006) Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295(14):1658–1667PubMedGoogle Scholar
  20. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353(17):1784–1792PubMedGoogle Scholar
  21. Bezwoda WR, Esser JD, Dansey R, Kessel I, Lange M (1991) The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer 68(4):867–872PubMedGoogle Scholar
  22. Bhujwalla ZM, Artemov D, Aboagye E, Ackerstaff E, Gillies RJ, Natarajan K et al (2001) The physiological environment in cancer vascularization, invasion and metastasis. Novartis Found Symp 240:23–38; discussion 38–45, 152–153Google Scholar
  23. Bowen SL, Wu Y, Chaudhari AJ, Fu L, Packard NJ, Burkett GW et al (2009) Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med 50(9):1401–1408PubMedGoogle Scholar
  24. Bristow A, Agrawal A, Evans A, Burrell H, Cornford E, James J et al (2008) Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study. Breast 17(1):98–103PubMedGoogle Scholar
  25. Carkaci S, Macapinlac HA, Cristofanilli M, Mawlawi O, Rohren E, Gonzalez Angulo AM et al (2009) Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med 50(2):231–238PubMedGoogle Scholar
  26. Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB et al (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7(2):122–192PubMedGoogle Scholar
  27. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379PubMedGoogle Scholar
  28. Couturier O, Jerusalem G, N’Guyen J, Hustinx R (2006) Sequential positron emission tomography using [18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res 12(21):6437–6443PubMedGoogle Scholar
  29. Damle N, Bal C, Bandopadhyaya G, Kumar L, Kumar P (2007) Role of 18F Fluoride PET/CT in the detection of bone metastases in breast cancer patients. J Nucl Med 48(Suppl 2):142PGoogle Scholar
  30. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36(10):1766–1774PubMedGoogle Scholar
  31. Dijkers EC, de Vries EG, Kosterink JG, Brouwers AH, Lub-de Hooge MN (2008) Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des 14(31):3348–3362PubMedGoogle Scholar
  32. Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50(6):974–981PubMedGoogle Scholar
  33. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87(5):586–592PubMedGoogle Scholar
  34. Dirisamer A, Halpern BS, Flöry D, Wolf F, Beheshti M, Mayerhoefer ME et al (2010) Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 73(2):294–299PubMedGoogle Scholar
  35. Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46(7):1144–1150Google Scholar
  36. Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’Hern R et al (2006) Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol 17(5):818–826PubMedGoogle Scholar
  37. Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25(23):3440–3447PubMedGoogle Scholar
  38. Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM et al (2008) Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 26(27):4449–4457PubMedGoogle Scholar
  39. Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50(Suppl 1):106S–121Google Scholar
  40. Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J et al (2000) Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a southwest oncology group study. Int J Cancer 89(2):111–117PubMedGoogle Scholar
  41. Erguvan-Dogan B, Whitman GJ, Kushwaha AC, Phelps MJ, Dempsey PJ (2006) BI-RADS-MRI: a primer. AJR Am J Roentgenol 187(2):W152–W160PubMedGoogle Scholar
  42. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G et al (2004) Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol 183(2):479–486PubMedGoogle Scholar
  43. Eubank WB, Mankoff DA, Takasugi J, Vesselle H, Eary JF, Shanley TJ et al (2001) 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 19(15):3516–3523PubMedGoogle Scholar
  44. Evans WP, Lee CH, Monsees BS, Monticciolo DL, Rebner M, Berlin L et al (2010) U.S. Preventive services task force: the unbalanced view. Radiology 257(1):297PubMedGoogle Scholar
  45. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367PubMedGoogle Scholar
  46. Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142PubMedGoogle Scholar
  47. Fogelman I (2005) Osteoblastic bone metastases in breast cancer: is not seeing believing? Eur J Nucl Med Mol Imaging 32(11):1250–1252PubMedGoogle Scholar
  48. Fueger BJ, Weber WA, Quon A, Crawford TL, Allen-Auerbach MS, Halpern BS et al (2005) Performance of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol 7(5):369–376PubMedGoogle Scholar
  49. Gene Expression Profiling of Breast Cancer to Select Women for Adjuvant Chemotherapy (2010) Accessed 21 Sept 2010
  50. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743PubMedGoogle Scholar
  51. Goethals I, Hanssens S, Kortbeek K, Smeets P, Van Belle S, Ham H (2010) Support for Warburg’s hypothesis using dynamic 18F-FDG PET in oncology. Eur J Nucl Med Mol Imaging 37(4):833PubMedGoogle Scholar
  52. Grant DG (1972) Tomosynthesis: a three-dimensional radiographic imaging technique. IEEE Trans Biomed Eng 19(1):20–28PubMedGoogle Scholar
  53. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474Google Scholar
  54. Haug AR, Schmidt GP, Klingenstein A, Heinemann V, Stieber P, Priebe M et al (2007) F-18-fluoro-2-deoxyglucose positron emission tomography/computed tomography in the follow-up of breast cancer with elevated levels of tumor markers. J Comput Assist Tomogr 31(4):629–634PubMedGoogle Scholar
  55. Hendrick RE (2010) Radiation doses and cancer risks from breast imaging studies1. Radiology 257(1):246–253PubMedGoogle Scholar
  56. Heusner T, Freudenberg LS, Kuehl H, Hauth EAM, Veit-Haibach P, Forsting M et al (2008a) Whole-body PET/CT-mammography for staging breast cancer: initial results. Br J Radiol 81(969):743–748PubMedGoogle Scholar
  57. Heusner TA, Kuemmel S, Umutlu L, Koeninger A, Freudenberg LS, Hauth EA et al (2008b) Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 49(8):1215–1222PubMedGoogle Scholar
  58. Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME et al (2009) Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging 36(10):1543–1550PubMedGoogle Scholar
  59. Hicks RJ, Dorow D, Roselt P (2006) PET tracer development—a tale of mice and men. Cancer Imaging 6:S102–S106PubMedGoogle Scholar
  60. Hodgson NC, Gulenchyn KY (2008) Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 26(5):712–720PubMedGoogle Scholar
  61. Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50(11):1820–1827PubMedGoogle Scholar
  62. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedGoogle Scholar
  63. Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ (1999) Comparative breast tumor imaging and comparative in vitro metabolism of 16alpha [18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol 26(1):123−130PubMedGoogle Scholar
  64. Judy CO, Kross B, Ramasubramanian S, Banta LE, Kinahan PE, Champley K et al (2008) The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol 53(3):637–653PubMedGoogle Scholar
  65. Juergens KU, Weckesser M, Stegger L, Franzius C, Beetz M, Schober O et al (2006) Tumor staging using whole-body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules? Eur Radiol 16(5):1131–1137Google Scholar
  66. Kalinyak J, Kassab R, Payne S, Luo W, Narayanan D, Yarnall SA (2008) Clinical PET guided breast biopsy system: from bench to bedside. J Nucl Med 49(S1):411PGoogle Scholar
  67. Kamel EM, Wyss MT, Fehr MK, von Schulthess GK, Goerres GW (2003) [18F]-Fluorodeoxyglucose positron emission tomography in patients with suspected recurrence of breast cancer. J Cancer Res Clin Oncol 129(3):147–153PubMedGoogle Scholar
  68. Katzenellenbogen JA, Mathias CJ, vanBrocklin HF, Brodack JW, Welch MJ (1993) Titration of the in vivo uptake of 16 alpha-[18F]fluoroestradiol by target tissues in the rat:competition by tamoxifen, and implications for quantitating estrogen receptors in vivo and the use of animal models in receptor-binding radiopharmaceutical development. Nucl Med Biol 20(6):735−745PubMedGoogle Scholar
  69. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347PubMedGoogle Scholar
  70. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976PubMedGoogle Scholar
  71. Kopans DB, Berlin L, Hall FM (2010) The U.S. Preventive services task force guidelines are not supported by the scientific evidence. Radiology 257(1):294–295PubMedGoogle Scholar
  72. Kopans DB (2010a) Re: “Saving lives: mammograms, breast cancer, and health insurance reform”. J Am Coll Radiol 7(7):545; author reply 545–546Google Scholar
  73. Kopans DB (2010b) The recent US preventive services task force guidelines are not supported by the scientific evidence and should be rescinded. J Am Coll Radiol 7(4):260–264PubMedGoogle Scholar
  74. Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJ (2007) Clinical production, stability studies and PET imaging with 16-alpha-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci 10(2):256s–265sPubMedGoogle Scholar
  75. Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med 46(11):1819–1824PubMedGoogle Scholar
  76. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14(9):2584–2589PubMedGoogle Scholar
  77. Kwee TC, Takahara T, Ochiai R, Koh D, Ohno Y, Nakanishi K et al (2010) Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 51(10):1549–1558PubMedGoogle Scholar
  78. Le-Petross CH, Bidaut L, Yang WT (2008) Evolving role of imaging modalities in inflammatory breast cancer. Semin Oncol 35(1):51–63PubMedGoogle Scholar
  79. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D et al (2010) Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7(1):18–27PubMedGoogle Scholar
  80. Lee JH, Rosen EL, Mankoff DA (2009a) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 1—overview, detection, and staging. J Nucl Med 50(4):569–581PubMedGoogle Scholar
  81. Lee JH, Rosen EL, Mankoff DA (2009b) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2—response to therapy, other indications, and future directions. J Nucl Med 50(5):738–748PubMedGoogle Scholar
  82. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37(6):451–461PubMedGoogle Scholar
  83. Lee YT (1982) Variability of steroid receptors in multiple biopsies of breast cancer: effect of systemic therapy. Breast Cancer Res Treat 2(2):185–193PubMedGoogle Scholar
  84. Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L et al (2007) MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356(13):1295–1303PubMedGoogle Scholar
  85. Levine PH, Veneroso C (2008) The epidemiology of inflammatory breast cancer. Semin Oncol 35(1):11–16PubMedGoogle Scholar
  86. Liu C, Shen Y, Lin C, Yen R, Kao C (2002) Clinical impact of [(18)F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels: a preliminary report. Jpn J Clin Oncol 32(7):244–247PubMedGoogle Scholar
  87. Livingston RB, Hart JS (1977) The clinical applications of cell kinetics in cancer therapy. Annu Rev Pharmacol Toxicol 17:529–543PubMedGoogle Scholar
  88. Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167(2):127–145PubMedGoogle Scholar
  89. Lousa P, Martins M, Matela N, Mendes P, Moura R, Nobre J et al (2006) Design and evaluation of the clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci 53(1):71–77Google Scholar
  90. Lu X, Luo W, Kalinyak J (2010) Radiation dose reduction for personalized breast PET imaging. J Nucl Med 51(S2):358Google Scholar
  91. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P (2009) clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 50(10):1666–1675PubMedGoogle Scholar
  92. MacDonald L, Luo W, Lu X, Wang C, Rogers J (2010) TH-D-201B-09: low dose lesion contrast on PEM Flex Solo II. Med Phys 37(6):3473Google Scholar
  93. MacDonald L (2010) WE-B-204C-01: postron emission mammography. Med Phys 37(6):3416Google Scholar
  94. Magnetic Resonance Imaging (MRI) (2010) Practice guidelines and technical standards—american college of radiology Accessed 5 Jan 2011
  95. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ et al (2002) Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 43(4):500–509PubMedGoogle Scholar
  96. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44(11):1806–1814PubMedGoogle Scholar
  97. Mankoff DA, Eubank WB (2006) Current and future use of positron emission tomography (PET) in breast cancer. J Mammary Gland Biol Neoplasia 11(2):125–136PubMedGoogle Scholar
  98. Mankoff DA, Peterson LM, Tewson TJ, Link JM, Gralow JR, Graham MM et al (2001) [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 42(4):679–684PubMedGoogle Scholar
  99. Marshall E (2010) Public health. Brawling over mammography. Science 327(5968):936–938PubMedGoogle Scholar
  100. Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF et al (2006) Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 47(9):1440–1446PubMedGoogle Scholar
  101. McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ et al (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531PubMedGoogle Scholar
  102. Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101(25):9393–9398PubMedGoogle Scholar
  103. Mercier G, Slanetz P, Kornguth P (2010a) Positron emission mammography vs. digital mammography—what do women prefer? J Nucl Med 51(S2):1198Google Scholar
  104. Mercier GA, Slanetz PJ, Kornguth PJ (2010b) Does positron emission mammography result in a lower call back rate than digital screening mammography? Abstract Book: 24th Annual Northeast Regional Scientific Meeting of the Society of Nuclear Medicine. Oct 22:Poster #8Google Scholar
  105. Milani M, Harris AL (2008) Targeting tumour hypoxia in breast cancer. Eur J Cancer 44(18):2766–2773PubMedGoogle Scholar
  106. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169(1):45–48PubMedGoogle Scholar
  107. Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–6487PubMedGoogle Scholar
  108. Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, et al (2010) Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol 28(19):3154−3159PubMedGoogle Scholar
  109. Moy L, Noz ME, Jr GQM, Melsaethe A, Deans AE, Murphy-Walcott AD et al (2010) Role of fusion of prone FDG-PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J [Internet]. [cited 2010 Apr 28] Available from:
  110. Moy L, Ponzo F, Noz ME, Maguire GQ, Murphy-Walcott AD, Deans AE et al (2007) Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 48(4):528PubMedGoogle Scholar
  111. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH (2000) Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med 41(11):1851–1858PubMedGoogle Scholar
  112. Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32(11):1253–1258PubMedGoogle Scholar
  113. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL (2005) CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology 237(2):627–634PubMedGoogle Scholar
  114. NCCN Breast Cancer Guidelines Updated: SLNB and PET/CT Are Highlights (2010) Accessed 19 Mar 2010
  115. NCCN Clinical Practice Guidelines in Oncology (2010) Accessed 13 Oct 2010
  116. NCCN Invasive Breast Cancer Clinical Practice Guidelines (2007) J Natl Compr Cancer Netw (JNCCN) 5:246Google Scholar
  117. O’Connor M, Li H, Rhodes D, Hruska C, Vetter R (2010) Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast in a screening environment. J Nucl Med 51(S2):240Google Scholar
  118. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T et al (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22(8):875–879PubMedGoogle Scholar
  119. Oude Munnink TH, Korte MA, Nagengast WB, Timmer-Bosscha H, Schroder CP, Jong JR et al (2010) (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur J Cancer 46(3):678–84Google Scholar
  120. Oude Munnink TH, Nagengast WB, Brouwers AH, Schröder CP, Hospers GA, Lub-de Hooge MN et al (2009) Molecular imaging of breast cancer. Breast 18(Suppl 3):S66–73Google Scholar
  121. Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69PubMedGoogle Scholar
  122. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695PubMedGoogle Scholar
  123. Pan L, Han Y, Sun X, Liu J, Gang H (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136(7):1007−1022PubMedGoogle Scholar
  124. Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, et al (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18(21):3651−3664PubMedGoogle Scholar
  125. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374PubMedGoogle Scholar
  126. Petrén-Mallmin M, Andréasson I, Ljunggren O, Ahlström H, Bergh J, Antoni G et al (1998) Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol 27(2):72–76PubMedGoogle Scholar
  127. Pio BS, Park CK, Pietras R, et al (2006) Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36−42PubMedGoogle Scholar
  128. Podoloff DA, Advani RH, Allred C, Benson AB, Brown E, Burstein HJ et al (2007) NCCN task force report: positron emission tomography (PET)/computed tomography (CT) scanning in cancer. J Natl Compr Canc Netw 5 (Suppl 1):S1–S22; quiz S23–22Google Scholar
  129. Podoloff DA, Ball DW, Ben-Josef E, Benson AB, Cohen SJ, Coleman RE et al (2009) NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 7(Suppl 2):S1–S26PubMedGoogle Scholar
  130. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O (2006) The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer 107(11):2545–2551PubMedGoogle Scholar
  131. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252PubMedGoogle Scholar
  132. Rasbridge SA, Gillett CE, Seymour AM, Patel K, Richards MA, Rubens RD et al (1994) The effects of chemotherapy on morphology, cellular proliferation, apoptosis and oncoprotein expression in primary breast carcinoma. Br J Cancer 70(2):335–341PubMedGoogle Scholar
  133. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684PubMedGoogle Scholar
  134. Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and Breast Cancer Imaging. Radiographics 27(Suppl 1):S215–S229Google Scholar
  135. Ross E, Beylin D, Yarnall S, Keen R, Sawyer K, Van Geffen J et al (2005) Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer. Am J Surg 190(4):628–632PubMedGoogle Scholar
  136. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372PubMedGoogle Scholar
  137. Saad A, Kanate A, Sehbai A, Marano G, Hobbs G, Abraham J (2008) Correlation among [18F]fluorodeoxyglucose positron emission tomography/computed tomography, cancer antigen 27.29, and circulating tumor cell testing in metastatic breast cancer. Clin Breast Cancer 8(4):357–361PubMedGoogle Scholar
  138. Sacks A, Subramaniam R, Hayim M, Ozonoff A, Mercier G (2010) Value of FDG PET/CT and Tc-99 m MDP bone scan in initial staging of skeletal metastases in patients with breast cancer. In: Abstract Book RSNA, Chicago, IL, USA: 2010 Accessed 29 Dec 2010
  139. Scheidhauer K, Walter C, Seemann M (2004) FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging 31:S70–S79PubMedGoogle Scholar
  140. Savelli G, Maffioli L, Maccauro M, De Maccauro E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 45(1):27−37PubMedGoogle Scholar
  141. Schelling M, Avril N, Nährig J, Kuhn W, Römer W, Sattler D et al (2000) Positron emission tomography using [18F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695PubMedGoogle Scholar
  142. Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV, Kahn S et al (2010) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging Accessed 25 Oct 2010
  143. Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 27(4):535–541PubMedGoogle Scholar
  144. Sekido Y, Umemura S, Takekoshi S, Suzuki Y, Tokuda Y, Tajima T et al (2003) Heterogeneous gene alterations in primary breast cancer contribute to discordance between primary and asynchronous metastatic/recurrent sites: HER2 gene amplification and p53 mutation. Int J Oncol 22(6):1225–1232PubMedGoogle Scholar
  145. Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N (2008) Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. [Erratum appears in Clin Nucl Med. 2008 May 3(5):329]. Clin Nucl Med 33(2):97-101PubMedGoogle Scholar
  146. Siggelkow W, Zimny M, Faridi A, Petzold K, Buell U, Rath W (2003) The value of positron emission tomography in the follow-up for breast cancer. Anticancer Res 23(2C):1859–67Google Scholar
  147. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedGoogle Scholar
  148. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792PubMedGoogle Scholar
  149. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F et al (2000) Positron emission tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18(8):1676–1688PubMedGoogle Scholar
  150. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47(5):793–796PubMedGoogle Scholar
  151. Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31(5):720–724PubMedGoogle Scholar
  152. Solomayer EF, Becker S, Pergola-Becker G, Bachmann R, Kramer B, Vogel U et al (2006) Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat 98(2):179–184PubMedGoogle Scholar
  153. Souvatzoglou M, Buck A, Schmidt S, Quante S, Herrmann K, Scheidhauer K et al (2008) PET/CT for restaging breast cancer—impact on patient management and patient outcome. J Nucl Med Meet Abstr 49(MeetingAbstracts):18PGoogle Scholar
  154. Spataro V, Price K, Goldhirsch A, Cavalli F, Simoncini E, Castiglione M et al (1992) Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The international breast cancer study group (formerly Ludwig Group). Ann Oncol 3(9):733–740PubMedGoogle Scholar
  155. Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB et al. (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9(8):913−921PubMedGoogle Scholar
  156. Suarez M, Perez-Castejon MJ, Jimenez A, Domper M, Ruiz G, Montz R et al (2002) Early diagnosis of recurrent breast cancer with FDG-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med 46(2):113–121PubMedGoogle Scholar
  157. Tafra L (2007) Positron emission tomography (PET) and mammography (PEM) for breast cancer: importance to surgeons. Ann Surg Oncol 14(1):3–13PubMedGoogle Scholar
  158. Tateishi U, Gamez C, Dawood S, Yeung HWD, Cristofanilli M, Macapinlac HA (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247(1):189–196PubMedGoogle Scholar
  159. Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P (1999) Interactions of 16alpha-[18F]fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol 26(8):905−913PubMedGoogle Scholar
  160. Thompson CJ, Murthy K, Weinberg IN, Mako F (1994) Feasibility study for positron emission mammography. Med Phys 21(4):529–538PubMedGoogle Scholar
  161. Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207(3):767–774PubMedGoogle Scholar
  162. Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M et al (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45(11):1829–1837PubMedGoogle Scholar
  163. Uematsu T, Kasami M, Yuen S (2009) Comparison of FDG PET and MRI for evaluating the tumor extent of breast cancer and the impact of FDG PET on the systemic staging and prognosis of patients who are candidates for breast-conserving therapy. Breast Cancer 16(2):97–104PubMedGoogle Scholar
  164. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M et al (2005) Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. Am J Roentgenol 184(4):1266–1273Google Scholar
  165. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930):1029–1033Google Scholar
  166. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206PubMedGoogle Scholar
  167. Veit-Haibach P, Antoch G, Beyer T, Stergar H, Schleucher R, Hauth EA, et al (2007) FDG-PET CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy. Brit J Radiol 80(955):508-515PubMedGoogle Scholar
  168. Veronesi P, Berrettini A, Paganelli G, Veronesi U, De Cicco C, Galimberti VE et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18(3):473–478PubMedGoogle Scholar
  169. Wahl RL, Siegel BA, Coleman RE, Gatsonis CG (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET study group. J Clin Oncol 22(2):277–285PubMedGoogle Scholar
  170. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11(11):2101–2111PubMedGoogle Scholar
  171. Wang X, Koch S (2009) Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol 38(4):156–169PubMedGoogle Scholar
  172. Webster DJ, Bronn DG, Minton JP (1978) Estrogen receptor levels in multiple biopsies from patients with breast cancer. Am J Surg 136(3):337–338PubMedGoogle Scholar
  173. Weinstein S, Rosen M (2010) Breast MR imaging: current indications and advanced imaging techniques. Radiol Clin North Am 48(5):1013–1042PubMedGoogle Scholar
  174. Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 10(3):25Google Scholar
  175. WHO | Cancer (2010) Accessed 19 April 2010
  176. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118−145PubMedGoogle Scholar
  177. Williams HT, Smith S (2005) FDG PET and SPECT of bone metastases in breast cancer. Am J Roentgenol 185(6):1651-a-1653Google Scholar
  178. Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52(6):1592–1597PubMedGoogle Scholar
  179. Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC (2002) Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 128(6):325–328PubMedGoogle Scholar
  180. Yang W, Le-Petross H, Macapinlac H, Carkaci S, Gonzalez-Angulo A, Dawood S et al (2008) Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat 109(3):417–426PubMedGoogle Scholar
  181. Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4 hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha [18F]fluoro-17beta-estradiol. J Med Chem 8(20):6366−6378Google Scholar
  182. Zasadny KR, Tatsumi M, Wahl RL (2003) FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers. Eur J Nucl Med Mol Imaging 30(2):274–280PubMedGoogle Scholar
  183. Zavarzin V, Weinberg IN, Stepanov PY, Beylin D, Lauckner K, Doss M et al (2003) Positron emission mammography: initial clinical results. Ann Surg Oncol 10(1):86–91PubMedGoogle Scholar
  184. Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A (2005) Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer 93(5):552–556PubMedGoogle Scholar
  185. Zujewski J, Chow C, Jones E, Chang V, Berg W, Frank J et al (1996) Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry. Eur J Nucl Med Mol Imaging 23(7):804–806Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gustavo A. Mercier
    • 1
  • Felix-Nicolas Roy
    • 2
  • François Bénard
    • 3
  1. 1.Molecular Imaging and Nuclear Medicine, Boston Medical CenterBoston University School of MedicineBostonUSA
  2. 2.Department of RadiologyCentre Hospitalier de l’Université de Montréal (CHUM)MontrealCanada
  3. 3.Department of RadiologyBC Cancer Agency, Functional Cancer Imaging, Centre of Excellence for Functional Cancer Imaging, University of British ColumbiaVancouverCanada

Personalised recommendations