MR-Guided Focused Ultrasound of the Brain

  • Rivka R. Colen
  • Ferenc A. Jolesz
Part of the Medical Radiology book series (MEDRAD)


Magnetic resonance-guided focused ultrasound surgery (MRgFUS) of the brain can be expected to revolutionize central nervous system (CNS) disease treatment and change the treatment paradigm in multiple fields including but not limited to neurooncology, neurosurgery, radiation oncology and the clinical neuroscience, in general. MRgFUS can be used to non-invasive thermally ablate brain tumors; its non-thermal effects cause blood brain barrier disruption that can be leveraged to increase the targeted delivery of drug, gene, and other therapeutics agents into the brain. FUS has been shown to play a part in the treatment of certain functional neurological disorders such as movement disorders, epilepsy, or pain, and may have a role in functional neurosurgery. FUS-induced arterial occlusion effects can be exploited in treating hemorrhaging vessels and vascular malformations. By contrast, FUS has thrombolytic effects that can be used in stroke. Thus, MRgFUS spans a significant spectrum of the clinical neurosciences and has the ability to significantly change numerous fields.


Transcranial Magnetic Stimulation Essential Tremor Central Nervous System Disease Thermal Ablation Uterine Fibroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60; discussion 60–61Google Scholar
  2. Ballantine HT Jr, Bell E, Manlapaz J (1960) Progress and problems in the neurological applications of focused ultrasound. J Neurosurg 17:858–876PubMedCrossRefGoogle Scholar
  3. Barnard JW, Fry WJ, Fry FJ, Krumins RF (1955) Effects of high intensity ultrasound on the central nervous system of the cat. J Comp Neurol 103:459–484PubMedCrossRefGoogle Scholar
  4. Brujan EA, Ikeda T, Matsumoto Y (2005) Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol 50:4797–4809PubMedCrossRefGoogle Scholar
  5. Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood–brain barrier. PLoS ONE 6:e27877PubMedCrossRefGoogle Scholar
  6. Chen L, Bouley DM, Harris BT, Butts K (2001) MRI study of immediate cell viability in focused ultrasound lesions in the rabbit brain. J Magn Reson Imaging 13:23–30PubMedCrossRefGoogle Scholar
  7. Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hsueh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12:1050–1060PubMedCrossRefGoogle Scholar
  8. Chung AH, Jolesz FA, Hynynen K (1999) Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys 26:2017–2026PubMedCrossRefGoogle Scholar
  9. Clement GT, Sun J, Giesecke T, Hynynen K (2000) A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 45:3707–3719PubMedCrossRefGoogle Scholar
  10. Clement GT, White PJ, King RL, McDannold N, Hynynen K (2005) A magnetic resonance imaging–-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med 24:1117–1125PubMedGoogle Scholar
  11. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16:956–965PubMedCrossRefGoogle Scholar
  12. Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA (1993) Magnetic resonance-guided thermal surgery. Magn Reson Med 30:98–106PubMedCrossRefGoogle Scholar
  13. Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA (1994) MR temperature mapping of focused ultrasound surgery. Magn Reson Med 31:628–636PubMedCrossRefGoogle Scholar
  14. Colen RR, Jolesz FA (2010) Future potential of MRI-guided focused ultrasound brain surgery. Neuroimaging Clin N Am 20:355–366PubMedCrossRefGoogle Scholar
  15. Colucci V, Strichartz G, Jolesz F, Vykhodtseva N, Hynynen K (2009) Focused ultrasound effects on nerve action potential in vitro. Ultrasound Med Biol 35:1737–1747PubMedCrossRefGoogle Scholar
  16. Deng CX, Sieling F, Pan H, Cui J (2004) Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 30:519–526PubMedCrossRefGoogle Scholar
  17. Diederich CJ, Hynynen K (1999) Ultrasound technology for hyperthermia. Ultrasound Med Biol 25:871–887PubMedCrossRefGoogle Scholar
  18. Doolittle ND, Miner ME, Hall WA, Siegal T, Jerome E, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Muldoon LL, Neuwelt EA (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood–brain barrier for the treatment of patients with malignant brain tumors. Cancer 88:637–647PubMedCrossRefGoogle Scholar
  19. Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT (2012) Focused ultrasound disruption of the blood–brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32:E3PubMedCrossRefGoogle Scholar
  20. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Ann Rev Biomed Eng 9:415–447CrossRefGoogle Scholar
  21. Foley JL, Little JW, Starr FL, 3rd, Frantz C, Vaezy S (2004) Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain. Ultrasound Med Biol 30:1199–1207PubMedCrossRefGoogle Scholar
  22. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60:1193–1208PubMedCrossRefGoogle Scholar
  23. Fry WJ (1958) Intense ultrasound in investigations of the central nervous system. Adv Biol Med Phys 6:281–348PubMedGoogle Scholar
  24. Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7:166–181Google Scholar
  25. Fulci G, Chiocca EA (2007) The status of gene therapy for brain tumors. Expert Opin Biol Ther 7:197–208PubMedCrossRefGoogle Scholar
  26. Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H (2004) Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs 22:27–37PubMedCrossRefGoogle Scholar
  27. Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA (2010) Intra-arterial chemotherapy with osmotic blood–brain barrier disruption for aggressive oligodendroglial tumors: results of a phase I study. Neurosurgery 66:48–58; discussion 58Google Scholar
  28. Guthkelch AN, Carter LP, Cassady JR, Hynynen KH, Iacono RP, Johnson PC, Obbens EA, Roemer RB, Seeger JF, Shimm DS et al (1991) Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 10:271–284PubMedCrossRefGoogle Scholar
  29. Huang Q, Deng J, Wang F, Chen S, Liu Y, Wang Z, Cheng Y (2012) Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Exp Neurol 233:350–356PubMedCrossRefGoogle Scholar
  30. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24:275–283PubMedCrossRefGoogle Scholar
  31. Hynynen K, Colucci V, Chung AH, Jolesz FA (1996) Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 22:1071–1077PubMedCrossRefGoogle Scholar
  32. Hynynen K, Vykhodtseva N, Chung AH et al (1997) Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 204:247–253PubMedGoogle Scholar
  33. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging–-guided focal opening of the blood–brain barrier in rabbits. Radiology 220:640–646PubMedCrossRefGoogle Scholar
  34. Hynynen K, McDannold N, MARTIN H, Jolesz FA, Vykhodtseva N (2003) The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison). Ultrasound Med Biol 29:473–481PubMedCrossRefGoogle Scholar
  35. Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, Jolesz FA (2004) 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med 52:100–107PubMedCrossRefGoogle Scholar
  36. Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D (2006a) Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-- – a primate study. Eur J Radiol 59:149–156PubMedCrossRefGoogle Scholar
  37. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006b) Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurgery 105:445–454CrossRefGoogle Scholar
  38. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, Martin E (2012) Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 32:E1PubMedCrossRefGoogle Scholar
  39. Jolesz FA (2009) MRI-guided focused ultrasound surgery. Ann Rev Med 60:417–430PubMedCrossRefGoogle Scholar
  40. Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ (1988) MR imaging of laser-tissue interactions. Radiology 168:249–253PubMedGoogle Scholar
  41. Jordao JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS ONE 5:e10549PubMedCrossRefGoogle Scholar
  42. Kinoshita M, Hynynen K (2005) A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 335:393–399PubMedCrossRefGoogle Scholar
  43. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006a) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. PNAS 103:11719–11723PubMedCrossRefGoogle Scholar
  44. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006b) Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340:1085–1090PubMedCrossRefGoogle Scholar
  45. Kluger BM, Triggs WJ (2007) Use of transcranial magnetic stimulation to influence behavior. Curr Neurol Neurosci Rep 7:491–497PubMedCrossRefGoogle Scholar
  46. Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1099; discussion 99–100Google Scholar
  47. Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA (1997) Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med 38:845–851PubMedCrossRefGoogle Scholar
  48. Leighton TG (1994) The Acoustic Bubble. Academic Press, San DiegoGoogle Scholar
  49. Lele PP (1962) A simple method for production of trackless focal lesions with focused ultrasound: physical factors. J Physiol 160:494–512PubMedGoogle Scholar
  50. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010a) Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425PubMedCrossRefGoogle Scholar
  51. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, Tseng IC, Wang JJ, Yen TC, Chen PY, Wei KC (2010b) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107:15205–15210PubMedCrossRefGoogle Scholar
  52. Lynn JG, Zwemer RL, Chick AJ (1942) The biological application of focused ultrasonic waves. Science 96:119–120PubMedCrossRefGoogle Scholar
  53. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66:858–861PubMedCrossRefGoogle Scholar
  54. McDannold NJ, Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11:191–202PubMedCrossRefGoogle Scholar
  55. McDannold N, King R, Jolesz FA, Hynynen K (2000) Usefulness of MR imaging–derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216:517–523PubMedGoogle Scholar
  56. McDannold NJ, Vykhodtseva NI, Hynynen K (2006) Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 241:95–106PubMedCrossRefGoogle Scholar
  57. McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood–brain barrier disruption. Ultrasound Med Biol 34:930–937PubMedCrossRefGoogle Scholar
  58. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K (2010) Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 66:323–332 discussion 32PubMedCrossRefGoogle Scholar
  59. Medel R, Crowley RW, McKisic MS, Dumont AS, Kassell NF (2009) Sonothrombolysis: an emerging modality for the management of stroke. Neurosurgery 65:979–993; discussion 93Google Scholar
  60. Meyers R, Fry WJ, Fry FJ, Dreyer LL, Schultz DF, Noyes RF (1959) Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg 16:32–54PubMedCrossRefGoogle Scholar
  61. Min BK, Bystritsky A, Jung KI, Fischer K, Zhang Y, Maeng LS, Park SI, Chung YA, Jolesz FA, Yoo SS (2011) Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci 12:23PubMedCrossRefGoogle Scholar
  62. Minnaert M (1933) On musical air-bubbles and sounds of running water. Phil Mag 16:235–248Google Scholar
  63. Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260PubMedCrossRefGoogle Scholar
  64. Moonen CT (2007) Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound. Clin Cancer Res 13:3482–3489PubMedCrossRefGoogle Scholar
  65. Morocz IA, Hynynen K, Gudbjartsson H, Peled S, Colucci V, Jolesz FA (1998) Brain edema development after MRI-guided focused ultrasound treatment. J Magn Reson Imaging 8:136–142PubMedCrossRefGoogle Scholar
  66. Moser D, Zadicario E, Schiff G, Jeanmonod D (2012) Measurement of targeting accuracy in focused ultrasound functional neurosurgery. Neurosurg Focus 32:E2PubMedCrossRefGoogle Scholar
  67. Neuwelt EA (2004) Mechanisms of disease: the blood–brain barrier. Neurosurgery 54:131–140; discussion 41–42Google Scholar
  68. Nyborg WL (1968) Mechanisms for nonthermal effects of sound. J Acoust Soc Am 44:1302–1309PubMedCrossRefGoogle Scholar
  69. Nyborg WL (2000) Biological effects of ultrasound: development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 26:911–964PubMedCrossRefGoogle Scholar
  70. Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 27:301–333PubMedCrossRefGoogle Scholar
  71. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183PubMedCrossRefGoogle Scholar
  72. Panych LP, Hrovat MI, Bleier AR, Jolesz FA (1992) Effects related to temperature changes during MR imaging. J Magn Reson Imaging 2:69–74PubMedCrossRefGoogle Scholar
  73. Pardridge WM (2003) Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105PubMedCrossRefGoogle Scholar
  74. Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14PubMedCrossRefGoogle Scholar
  75. Pardridge WM (2009) Alzheimer’s disease drug development and the problem of the blood–brain barrier. Alzheimers Dement 5:427–432PubMedCrossRefGoogle Scholar
  76. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y (2006) Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59:949–955; discussion 55–56Google Scholar
  77. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS ONE 3:e2175PubMedCrossRefGoogle Scholar
  78. Riesz P, Kondo T (1992) Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 13:247–270PubMedCrossRefGoogle Scholar
  79. Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28PubMedCrossRefGoogle Scholar
  80. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764; discussion 264–266Google Scholar
  81. Sheikov N, McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K (2004) Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989PubMedCrossRefGoogle Scholar
  82. Sheikov NMN, Jolesz F, Zhang YZ, Tam K, Hynynen K (2006) Brain arterioles show more active vesicular transport of blood–borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound Med Biol 32:1399–1409PubMedCrossRefGoogle Scholar
  83. Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104PubMedCrossRefGoogle Scholar
  84. Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R (2004) Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 11:1532–1539PubMedCrossRefGoogle Scholar
  85. Tempany CM, McDannold NJ, Hynynen K, Jolesz FA (2011) Focused ultrasound surgery in oncology: overview and principles. Radiology 259:39–56PubMedCrossRefGoogle Scholar
  86. Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK (2012) Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33:704–712PubMedCrossRefGoogle Scholar
  87. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907PubMedCrossRefGoogle Scholar
  88. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314PubMedCrossRefGoogle Scholar
  89. Vaezy S, Martin R, Yaziji H, Kaczkowski P, Keilman G, Carter S, Caps M, Chi EY, Bailey M, Crum L (1998) Hemostasis of punctured blood vessels using high-intensity focused ultrasound. Ultrasound Med Biol 24:903–910PubMedCrossRefGoogle Scholar
  90. Vykhodtseva NI, Hynynen K, Damianou C (1995) Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21:969–979PubMedCrossRefGoogle Scholar
  91. Vykhodtseva N, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K (2000) MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol 26:871–880PubMedCrossRefGoogle Scholar
  92. Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–-brain barrier disruption. Ultrasonics 48:279–296PubMedCrossRefGoogle Scholar
  93. Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451PubMedCrossRefGoogle Scholar
  94. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, McDannold NJ, Pascual-Leone A, Jolesz FA (2011) Focused ultrasound modulates region-specific brain activity. NeuroImage 56:1267–1275PubMedCrossRefGoogle Scholar
  95. Zderic V, Brayman AA, Sharar SR, Crum LA, Vaezy S (2006) Microbubble-enhanced hemorrhage control using high intensity focused ultrasound. Ultrasonics 45:113–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of MRI, Department of Radiology National Center for Image Guided Therapy, Brigham and Women’s Hospital/Harvard Medical SchoolBostonUSA

Personalised recommendations