Skip to main content

Radiation Protection and Quality Assurance in Bone Densitometry

  • Chapter
  • 2172 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

It is widely recognized that early diagnosis of osteoporosis is of paramount importance to prevent fractures. Several X-ray based imaging techniques capable of assessing bone quantity and quality have been developed. However, exposure to ionizing radiation carries a potential risk and, for this reason, it is necessary to ensure adequate radiation protection for patients and staff. This chapter provides (a) the general terminology used in quantifying radiation, (b) a brief review of the system of radiation protection, and (c) data on the levels of radiation exposure associated with methods used for diagnosis of osteoporosis. Moreover, the importance of quality assurance in bone densitometry is discussed and quality control tests are proposed to ensure that DXA devices are operating according to specifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JE (2008) Dual-energy X-ray absorptiometry. In: Grampp S (ed) Radiology of osteoporosis, 2nd edn. Springer, New York, pp 105–124

    Chapter  Google Scholar 

  • Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424

    Article  PubMed  Google Scholar 

  • American College of Radiology (2008) Practice guidelines for the performance of dual-energy X-ray absorptiometry (DXA). In: Practice guidelines and technical standards, pp 1–10. Available via http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/dx.asp. Accessed 26 March 2012

  • American College of Radiology (2011) ACR practice guideline for continuing medical education (CME), pp. 1–3. Available via http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/cme/cme.aspx. Accessed 23 March 2012

  • American Society of Radiologic Technologists (2009) Bone densitometry curriculum Albuquerque (NM). Am Soc Radiol Technol 1–70

    Google Scholar 

  • Bacchetta J, Boutroy S, Vilayphiou N et al (2010) Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II–IV chronic kidney disease. J Bone Miner Res 25:849–857

    PubMed  Google Scholar 

  • Bauer JS, Muller D, Ambekar A et al (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615

    Article  PubMed  CAS  Google Scholar 

  • Bezakova E, Collins PJ, Beddoe AH (1997) Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol 70:172–179

    PubMed  CAS  Google Scholar 

  • Blake GM, Rea JA, Fogelman I (1997) Vertebral morphometry studies using dual-energy X-ray absorptiometry. Semin Nucl Med 27:276–290

    Article  PubMed  CAS  Google Scholar 

  • Blake G, Naeem M, Boutros M (2006) Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 38:935–942

    Article  PubMed  Google Scholar 

  • Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158

    Article  PubMed  Google Scholar 

  • Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  PubMed  CAS  Google Scholar 

  • Brouwers JE, van Rietbergen B, Huiskes R (2007) No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of Wistar rats detected after eight weekly scans. J Orthop Res 25:1325–1332

    Article  PubMed  Google Scholar 

  • Burrows M, Liu D, McKay H (2010) High resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21:515–520

    Article  PubMed  CAS  Google Scholar 

  • Cawte SA, Pearson D, Green DJ, Maslanka WB, Miller CG, Rogers AT (1999) Cross-calibration, precision and patient dose measurements in preparation for clinical trials using dual energy X-ray absorptiometry of the lumbar spine. Br J Radiol 72:354–362

    PubMed  CAS  Google Scholar 

  • Damilakis J, Guglielmi G (2010) Quality assurance and dosimetry in bone densitometry. Radiol Clin N Am 48:629–640

    Article  PubMed  Google Scholar 

  • Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H, Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual X-ray absorptiometry examinations. Osteoporos Int 13:716–722

    Article  PubMed  CAS  Google Scholar 

  • Damilakis J, Maris T, Karantanas A (2007) An update on the assessment of osteoporosis using radiologic techniques. Eur Radiol 17:1591–1602

    Article  PubMed  Google Scholar 

  • Damilakis J, Adams J, Guglielmi G, Link T (2010a) Radiation exposure in X-ray-based imaging techniques in osteoporosis. Eur Radiol 20:2707–2714

    Article  PubMed  Google Scholar 

  • Damilakis J, Perisinakis K, Tzedakis A, Papadakis A, Karantanas A (2010b) Radiation dose to the conceptus from multidetector CT during early gestation: a method that allows for variations in maternal body size and conceptus position. Radiology 257:483–489

    Article  PubMed  Google Scholar 

  • Das M, Mahnken AH, Muhlenbruch G et al (2005) Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. Am J Roentgenol 184:1437–1443

    Article  Google Scholar 

  • Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147

    Article  PubMed  Google Scholar 

  • Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  • Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162

    Article  PubMed  Google Scholar 

  • Engelke K, Libanati C, Liu Y et al (2009a) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: Accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45:110–118

    Article  PubMed  Google Scholar 

  • Engelke K, Mastmeyer A, Bousson V, Fuerst T, Laredo J, Kalender W (2009b) Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone 44:566–572

    Article  PubMed  Google Scholar 

  • European Commission, Radiation Protection 99 (1998) Guidance on medical exposures in medical and biomedical research, Directorate-General Environment. Nuclear Safety and Civil Protection

    Google Scholar 

  • Fan B, Lu Y, Genant H, Fuerst T, Shepherd J (2010) Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? Osteoporos Int 21:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728

    Article  PubMed  CAS  Google Scholar 

  • Fuerst T, Njeh C, Hans D (1999) Quality assurance and quality control in quantitative ultrasound. In: Njeh CF, Hans D, Fuerst T, Gluer CC, Genant H (eds) Quantitative ultrasound. Assessment of osteoporosis and bone status, 1st edn. Martin Dunitz, London, pp 163–175

    Google Scholar 

  • Genant HK, Engelke K, Prevrhal S (2008) Advanced CT bone imaging in osteoporosis. Rheumatology 47:iv9–iv16

    Article  PubMed  Google Scholar 

  • Gies M, Kalender WA, Wolf H et al (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26:2235–2247

    Article  PubMed  CAS  Google Scholar 

  • Graeff C, Timm W, Nickelsen TN, Farrerons J et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Greess H, Wolf H, Baum U et al (1999) Dosage reduction in computed tomography by anatomy-oriented attenuation-based tube-current modulation: the first clinical results. Rofo 170:246–250

    PubMed  CAS  Google Scholar 

  • Greess H, Wolf H, Baum U et al (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394

    Article  PubMed  CAS  Google Scholar 

  • Greess H, Lutze J, Nomayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by on-line tube current modulation. Eur Radiol 14:995–999

    Article  PubMed  CAS  Google Scholar 

  • Griffith J, Genant H (2008) Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab 22:737–764

    Article  PubMed  Google Scholar 

  • Gundry CR, Miller CW, Ramos E et al (1990) Dual-energy radiographic absorptiometry of the lumbar spine: clinical experience with two different systems. Radiology 174:539–541

    PubMed  CAS  Google Scholar 

  • Hanson J (1997) Standardization of femur BMD (letter to the editor). J Bone Miner Res 12:1316–1317

    Article  PubMed  CAS  Google Scholar 

  • Huda W, Morin RL (1996) Patient doses in bone mineral densitometry. Br J Radiol 69:422–425

    Article  PubMed  CAS  Google Scholar 

  • Hui SL, Gao S, Zhou XH et al (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Hundt W, Rust F, Stabler A et al (2005) Dose reduction in multislice computed tomography. J Comput Assist Tomogr 29:140–147

    Article  PubMed  Google Scholar 

  • International Commission on Radiological Protection [ICRP publication 103] (2007) Recommendations of the international commission on radiological protection. Ann ICRP 37:1–332

    Google Scholar 

  • International Commission on Radiological Protection [ICRP publication 84] (2000) Pregnancy and medical radiation. Ann ICRP 30:1–43

    Google Scholar 

  • International Committee for Standards in Bone Measurement (1997) Standardization of proximal femur bone mineral density (BMD) measurements by DXA. Bone 21:369–370

    Article  Google Scholar 

  • International Osteoporosis Foundation (2012) Training and education courses. Available via http://www.iofbonehealth.org/bonehealth/training-and-education-courses. Accessed 29 March 2012

  • International Society for Clinical Densitometry (2012) Education. Available via http://www.iscd.org/Visitors/education/. Accessed 29 March 2012

  • Issever A, Link T, Kentenich M et al (2009) Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol 20:458–468

    Article  PubMed  Google Scholar 

  • Ito M, Ikeda K, Nishiguchi M et al (2005) Multidetector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836

    Article  PubMed  Google Scholar 

  • Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2:82–87

    Article  PubMed  CAS  Google Scholar 

  • Kalender W (2005) Computed tomography, fundamentals, system technology, image quality, applications. Publicis Corporate Publishing, Erlangen, pp 209–230

    Google Scholar 

  • Kalender WA, Felsenberg D, Genant HK et al (1995) The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Khoo BC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Klinck R, Campbell G, Boyd S (2008) Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys 30:888–895

    Article  PubMed  Google Scholar 

  • Krebs A, Graeff C, Frieling I et al (2009) High resolution computed tomography of the vertebrae yields accurate information on trabecular distances if processed by 3D fuzzy segmentation approaches. Bone 44:145–152

    Article  PubMed  Google Scholar 

  • Larkin A, Sheahan N, O’Connor U et al (2008) QA/Acceptance testing of DEXA X-ray systems used in bone mineral densitometry. Radiat Prot Dosim 129:279–283

    Article  CAS  Google Scholar 

  • Lespessailles E, Gadois C, Kousiqnian I et al (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Lewis MK, Blake GM, Fogelman I (1994) Patient dose in dual X-ray absorptiometry. Osteoporosis Int 4:11–15

    Article  CAS  Google Scholar 

  • Link TM, Koppers BB, Licht T et al (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231:805–811

    Article  PubMed  Google Scholar 

  • Majumdar S, Lin J, Link T et al (1999) Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26:1330–1340

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Link TM, Millard J et al (2000) In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 27:2594–2599

    Article  PubMed  CAS  Google Scholar 

  • Mettler F, Huda W, Yoshizumi T, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  • National Research Council Committee on the Biological Effects of Ionizing Radiation, Committee to Assess Health Risks from Exposure to Low levels of Ionizing Radiation; Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies (2006) Health Risks from Exposure to low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academy Press, Washington

    Google Scholar 

  • Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM (1997) Radiation dose and in vitro precision in bone mineral density measurement using dual X-ray absorptiometry. Br J Radiol 70:719–727

    PubMed  CAS  Google Scholar 

  • O’Connor U, Dowling A, Larkin A et al (2008) Development of training syllabi for radiation protection and quality assurance of dual-energy X-ray absorptiometry (DXA) systems. Radiat Prot Dosim 129:211–213

    Article  Google Scholar 

  • Obenaus A, Smith A (2004) Radiation dose in rodent tissues during micro-CT imaging. J X-ray Sci Tech 12:241–249

    CAS  Google Scholar 

  • Papadakis AE, Perisinakis K, Damilakis J (2008) Automatic exposure control in pediatric and adult multidetector CT examinations: a phantom study on dose reduction and image quality. Med Phys 35:4567–4576

    Article  PubMed  Google Scholar 

  • Papadakis AE, Karantanas AH, Papadokostakis G, Petinellis E, Damilakis J (2009) Can abdominal multi-detector CT diagnose spinal osteoporosis? Eur Radiol 19:172–176

    Article  PubMed  Google Scholar 

  • Papadakis A, Perisinakis K, Oikonomou I, Damilakis J (2011) Automatic exposure control in pediatric and adult computed tomography examinations. Invest Radiol 46:654–662

    Article  PubMed  Google Scholar 

  • Pocock NA, Sambrook PN, Nguyen T et al (1992) Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 7:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors: report 13—solid cancer and noncancer disease mortality, 1950–1997. Radiat Res 160:381–407

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli R, Chapurlat R, Laroche J et al (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2 year study. Osteoporos Int 23:305–315

    Article  PubMed  CAS  Google Scholar 

  • Seeram E (2001) Computed tomography. physical principles, clinical applications and quality control, 2nd edn. W.B.Saunders, Philadelphia

    Google Scholar 

  • Sheahan NF, Dowling A, O’Reilly G et al (2005) Commissioning and quality assurance protocol for dual energy X-ray absorptiometry (DEXA) systems. Radiat Prot Dosimetry 117:288–290

    Article  PubMed  CAS  Google Scholar 

  • Sont WN, Zielinski, Ashmore JM, Jiang H, Krewski D, Fair ME, Band PR, Letourneau EG (2001) First analysis of cancer incidence and occupational radiation exposure based on the national dose registry of Canada. Am J Epidemiol 153:309–318

    Google Scholar 

  • Steel SA, Baker AJ, Saunderson JR (1998) An assessment of the radiation dose to patients and staff from a lunar expert-xl fan beam densitometer. Physiol Meas 19:17–26

    Article  PubMed  CAS  Google Scholar 

  • Steiger P (1995) Standardization of measurements for assessing BMD by DXA (letter to the editor). Calcif Tissue Int 57:469

    Article  PubMed  CAS  Google Scholar 

  • Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. Am J Roentgenol 181:331–334

    Article  Google Scholar 

  • Tothill P, Hannan W (2007) Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 18:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys 32:1621–1629

    Article  PubMed  CAS  Google Scholar 

  • Tzedakis A, Perisinakis K, Raissaki M, Damilakis J (2007) The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study. Med Phys 33:2472–2478

    Article  Google Scholar 

  • Vokes T, Bachman D, Baim S et al (2006) Vertebral fracture assessment: the 2005 ISCD official positions. J Clin Densitom 9:37–46

    Article  PubMed  Google Scholar 

  • World Nuclear Association. Nuclear Radiation and Health Effects (updated November 2011). Available via http://www.world-nuclear.org/info/inf05.html. Accessed 27 March 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Damilakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damilakis, J., Solomou, G. (2013). Radiation Protection and Quality Assurance in Bone Densitometry. In: Guglielmi, G. (eds) Osteoporosis and Bone Densitometry Measurements. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_612

Download citation

  • DOI: https://doi.org/10.1007/174_2012_612

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27883-9

  • Online ISBN: 978-3-642-27884-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics