Radiation Protection and Quality Assurance in Bone Densitometry

  • J. Damilakis
  • G. Solomou
Part of the Medical Radiology book series (MEDRAD)


It is widely recognized that early diagnosis of osteoporosis is of paramount importance to prevent fractures. Several X-ray based imaging techniques capable of assessing bone quantity and quality have been developed. However, exposure to ionizing radiation carries a potential risk and, for this reason, it is necessary to ensure adequate radiation protection for patients and staff. This chapter provides (a) the general terminology used in quantifying radiation, (b) a brief review of the system of radiation protection, and (c) data on the levels of radiation exposure associated with methods used for diagnosis of osteoporosis. Moreover, the importance of quality assurance in bone densitometry is discussed and quality control tests are proposed to ensure that DXA devices are operating according to specifications.


Quantitative Compute Tomography Bone Densitometry Compute Tomography Dose Index Digital Radiography System Tissue Equivalent Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams JE (2008) Dual-energy X-ray absorptiometry. In: Grampp S (ed) Radiology of osteoporosis, 2nd edn. Springer, New York, pp 105–124CrossRefGoogle Scholar
  2. Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424PubMedCrossRefGoogle Scholar
  3. American College of Radiology (2008) Practice guidelines for the performance of dual-energy X-ray absorptiometry (DXA). In: Practice guidelines and technical standards, pp 1–10. Available via Accessed 26 March 2012
  4. American College of Radiology (2011) ACR practice guideline for continuing medical education (CME), pp. 1–3. Available via Accessed 23 March 2012
  5. American Society of Radiologic Technologists (2009) Bone densitometry curriculum Albuquerque (NM). Am Soc Radiol Technol 1–70Google Scholar
  6. Bacchetta J, Boutroy S, Vilayphiou N et al (2010) Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II–IV chronic kidney disease. J Bone Miner Res 25:849–857PubMedGoogle Scholar
  7. Bauer JS, Muller D, Ambekar A et al (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615PubMedCrossRefGoogle Scholar
  8. Bezakova E, Collins PJ, Beddoe AH (1997) Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol 70:172–179PubMedGoogle Scholar
  9. Blake GM, Rea JA, Fogelman I (1997) Vertebral morphometry studies using dual-energy X-ray absorptiometry. Semin Nucl Med 27:276–290PubMedCrossRefGoogle Scholar
  10. Blake G, Naeem M, Boutros M (2006) Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 38:935–942PubMedCrossRefGoogle Scholar
  11. Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158PubMedCrossRefGoogle Scholar
  12. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRefGoogle Scholar
  13. Brouwers JE, van Rietbergen B, Huiskes R (2007) No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of Wistar rats detected after eight weekly scans. J Orthop Res 25:1325–1332PubMedCrossRefGoogle Scholar
  14. Burrows M, Liu D, McKay H (2010) High resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21:515–520PubMedCrossRefGoogle Scholar
  15. Cawte SA, Pearson D, Green DJ, Maslanka WB, Miller CG, Rogers AT (1999) Cross-calibration, precision and patient dose measurements in preparation for clinical trials using dual energy X-ray absorptiometry of the lumbar spine. Br J Radiol 72:354–362PubMedGoogle Scholar
  16. Damilakis J, Guglielmi G (2010) Quality assurance and dosimetry in bone densitometry. Radiol Clin N Am 48:629–640PubMedCrossRefGoogle Scholar
  17. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H, Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual X-ray absorptiometry examinations. Osteoporos Int 13:716–722PubMedCrossRefGoogle Scholar
  18. Damilakis J, Maris T, Karantanas A (2007) An update on the assessment of osteoporosis using radiologic techniques. Eur Radiol 17:1591–1602PubMedCrossRefGoogle Scholar
  19. Damilakis J, Adams J, Guglielmi G, Link T (2010a) Radiation exposure in X-ray-based imaging techniques in osteoporosis. Eur Radiol 20:2707–2714PubMedCrossRefGoogle Scholar
  20. Damilakis J, Perisinakis K, Tzedakis A, Papadakis A, Karantanas A (2010b) Radiation dose to the conceptus from multidetector CT during early gestation: a method that allows for variations in maternal body size and conceptus position. Radiology 257:483–489PubMedCrossRefGoogle Scholar
  21. Das M, Mahnken AH, Muhlenbruch G et al (2005) Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. Am J Roentgenol 184:1437–1443CrossRefGoogle Scholar
  22. Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRefGoogle Scholar
  23. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRefGoogle Scholar
  24. Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162PubMedCrossRefGoogle Scholar
  25. Engelke K, Libanati C, Liu Y et al (2009a) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: Accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45:110–118PubMedCrossRefGoogle Scholar
  26. Engelke K, Mastmeyer A, Bousson V, Fuerst T, Laredo J, Kalender W (2009b) Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone 44:566–572PubMedCrossRefGoogle Scholar
  27. European Commission, Radiation Protection 99 (1998) Guidance on medical exposures in medical and biomedical research, Directorate-General Environment. Nuclear Safety and Civil ProtectionGoogle Scholar
  28. Fan B, Lu Y, Genant H, Fuerst T, Shepherd J (2010) Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? Osteoporos Int 21:1227–1236PubMedCrossRefGoogle Scholar
  29. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728PubMedCrossRefGoogle Scholar
  30. Fuerst T, Njeh C, Hans D (1999) Quality assurance and quality control in quantitative ultrasound. In: Njeh CF, Hans D, Fuerst T, Gluer CC, Genant H (eds) Quantitative ultrasound. Assessment of osteoporosis and bone status, 1st edn. Martin Dunitz, London, pp 163–175Google Scholar
  31. Genant HK, Engelke K, Prevrhal S (2008) Advanced CT bone imaging in osteoporosis. Rheumatology 47:iv9–iv16PubMedCrossRefGoogle Scholar
  32. Gies M, Kalender WA, Wolf H et al (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26:2235–2247PubMedCrossRefGoogle Scholar
  33. Graeff C, Timm W, Nickelsen TN, Farrerons J et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22:1426–1433PubMedCrossRefGoogle Scholar
  34. Greess H, Wolf H, Baum U et al (1999) Dosage reduction in computed tomography by anatomy-oriented attenuation-based tube-current modulation: the first clinical results. Rofo 170:246–250PubMedGoogle Scholar
  35. Greess H, Wolf H, Baum U et al (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394PubMedCrossRefGoogle Scholar
  36. Greess H, Lutze J, Nomayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by on-line tube current modulation. Eur Radiol 14:995–999PubMedCrossRefGoogle Scholar
  37. Griffith J, Genant H (2008) Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab 22:737–764PubMedCrossRefGoogle Scholar
  38. Gundry CR, Miller CW, Ramos E et al (1990) Dual-energy radiographic absorptiometry of the lumbar spine: clinical experience with two different systems. Radiology 174:539–541PubMedGoogle Scholar
  39. Hanson J (1997) Standardization of femur BMD (letter to the editor). J Bone Miner Res 12:1316–1317PubMedCrossRefGoogle Scholar
  40. Huda W, Morin RL (1996) Patient doses in bone mineral densitometry. Br J Radiol 69:422–425PubMedCrossRefGoogle Scholar
  41. Hui SL, Gao S, Zhou XH et al (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470PubMedCrossRefGoogle Scholar
  42. Hundt W, Rust F, Stabler A et al (2005) Dose reduction in multislice computed tomography. J Comput Assist Tomogr 29:140–147PubMedCrossRefGoogle Scholar
  43. International Commission on Radiological Protection [ICRP publication 103] (2007) Recommendations of the international commission on radiological protection. Ann ICRP 37:1–332Google Scholar
  44. International Commission on Radiological Protection [ICRP publication 84] (2000) Pregnancy and medical radiation. Ann ICRP 30:1–43Google Scholar
  45. International Committee for Standards in Bone Measurement (1997) Standardization of proximal femur bone mineral density (BMD) measurements by DXA. Bone 21:369–370CrossRefGoogle Scholar
  46. International Osteoporosis Foundation (2012) Training and education courses. Available via Accessed 29 March 2012
  47. International Society for Clinical Densitometry (2012) Education. Available via Accessed 29 March 2012
  48. Issever A, Link T, Kentenich M et al (2009) Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol 20:458–468PubMedCrossRefGoogle Scholar
  49. Ito M, Ikeda K, Nishiguchi M et al (2005) Multidetector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRefGoogle Scholar
  50. Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2:82–87PubMedCrossRefGoogle Scholar
  51. Kalender W (2005) Computed tomography, fundamentals, system technology, image quality, applications. Publicis Corporate Publishing, Erlangen, pp 209–230Google Scholar
  52. Kalender WA, Felsenberg D, Genant HK et al (1995) The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92PubMedCrossRefGoogle Scholar
  53. Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  54. Khoo BC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20:1539–1545PubMedCrossRefGoogle Scholar
  55. Klinck R, Campbell G, Boyd S (2008) Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys 30:888–895PubMedCrossRefGoogle Scholar
  56. Krebs A, Graeff C, Frieling I et al (2009) High resolution computed tomography of the vertebrae yields accurate information on trabecular distances if processed by 3D fuzzy segmentation approaches. Bone 44:145–152PubMedCrossRefGoogle Scholar
  57. Larkin A, Sheahan N, O’Connor U et al (2008) QA/Acceptance testing of DEXA X-ray systems used in bone mineral densitometry. Radiat Prot Dosim 129:279–283CrossRefGoogle Scholar
  58. Lespessailles E, Gadois C, Kousiqnian I et al (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19:1019–1028PubMedCrossRefGoogle Scholar
  59. Lewis MK, Blake GM, Fogelman I (1994) Patient dose in dual X-ray absorptiometry. Osteoporosis Int 4:11–15CrossRefGoogle Scholar
  60. Link TM, Koppers BB, Licht T et al (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231:805–811PubMedCrossRefGoogle Scholar
  61. Majumdar S, Lin J, Link T et al (1999) Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26:1330–1340PubMedCrossRefGoogle Scholar
  62. Majumdar S, Link TM, Millard J et al (2000) In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 27:2594–2599PubMedCrossRefGoogle Scholar
  63. Mettler F, Huda W, Yoshizumi T, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 248:254–263PubMedCrossRefGoogle Scholar
  64. National Research Council Committee on the Biological Effects of Ionizing Radiation, Committee to Assess Health Risks from Exposure to Low levels of Ionizing Radiation; Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies (2006) Health Risks from Exposure to low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academy Press, WashingtonGoogle Scholar
  65. Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM (1997) Radiation dose and in vitro precision in bone mineral density measurement using dual X-ray absorptiometry. Br J Radiol 70:719–727PubMedGoogle Scholar
  66. O’Connor U, Dowling A, Larkin A et al (2008) Development of training syllabi for radiation protection and quality assurance of dual-energy X-ray absorptiometry (DXA) systems. Radiat Prot Dosim 129:211–213CrossRefGoogle Scholar
  67. Obenaus A, Smith A (2004) Radiation dose in rodent tissues during micro-CT imaging. J X-ray Sci Tech 12:241–249Google Scholar
  68. Papadakis AE, Perisinakis K, Damilakis J (2008) Automatic exposure control in pediatric and adult multidetector CT examinations: a phantom study on dose reduction and image quality. Med Phys 35:4567–4576PubMedCrossRefGoogle Scholar
  69. Papadakis AE, Karantanas AH, Papadokostakis G, Petinellis E, Damilakis J (2009) Can abdominal multi-detector CT diagnose spinal osteoporosis? Eur Radiol 19:172–176PubMedCrossRefGoogle Scholar
  70. Papadakis A, Perisinakis K, Oikonomou I, Damilakis J (2011) Automatic exposure control in pediatric and adult computed tomography examinations. Invest Radiol 46:654–662PubMedCrossRefGoogle Scholar
  71. Pocock NA, Sambrook PN, Nguyen T et al (1992) Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 7:1081–1084PubMedCrossRefGoogle Scholar
  72. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors: report 13—solid cancer and noncancer disease mortality, 1950–1997. Radiat Res 160:381–407PubMedCrossRefGoogle Scholar
  73. Rizzoli R, Chapurlat R, Laroche J et al (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2 year study. Osteoporos Int 23:305–315PubMedCrossRefGoogle Scholar
  74. Seeram E (2001) Computed tomography. physical principles, clinical applications and quality control, 2nd edn. W.B.Saunders, PhiladelphiaGoogle Scholar
  75. Sheahan NF, Dowling A, O’Reilly G et al (2005) Commissioning and quality assurance protocol for dual energy X-ray absorptiometry (DEXA) systems. Radiat Prot Dosimetry 117:288–290PubMedCrossRefGoogle Scholar
  76. Sont WN, Zielinski, Ashmore JM, Jiang H, Krewski D, Fair ME, Band PR, Letourneau EG (2001) First analysis of cancer incidence and occupational radiation exposure based on the national dose registry of Canada. Am J Epidemiol 153:309–318Google Scholar
  77. Steel SA, Baker AJ, Saunderson JR (1998) An assessment of the radiation dose to patients and staff from a lunar expert-xl fan beam densitometer. Physiol Meas 19:17–26PubMedCrossRefGoogle Scholar
  78. Steiger P (1995) Standardization of measurements for assessing BMD by DXA (letter to the editor). Calcif Tissue Int 57:469PubMedCrossRefGoogle Scholar
  79. Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. Am J Roentgenol 181:331–334CrossRefGoogle Scholar
  80. Tothill P, Hannan W (2007) Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 18:1515–1523PubMedCrossRefGoogle Scholar
  81. Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys 32:1621–1629PubMedCrossRefGoogle Scholar
  82. Tzedakis A, Perisinakis K, Raissaki M, Damilakis J (2007) The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study. Med Phys 33:2472–2478CrossRefGoogle Scholar
  83. Vokes T, Bachman D, Baim S et al (2006) Vertebral fracture assessment: the 2005 ISCD official positions. J Clin Densitom 9:37–46PubMedCrossRefGoogle Scholar
  84. World Nuclear Association. Nuclear Radiation and Health Effects (updated November 2011). Available via Accessed 27 March 2012

Copyright information

© Springer-Verlag Berlin Heidelberg  2013

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of CreteHeraklionGreece
  2. 2.Department of Medical PhysicsUniversity Hospital of HeraklionHeraklionGreece

Personalised recommendations