Hybrid MRI Systems and Applications

Part of the Medical Radiology book series (MEDRAD)


Hybrid X-ray/MRI systems facilitate complex minimally invasive procedures by providing information about anatomy and physiology from the MRI while using all of the tools available for X-ray fluoroscopy. Combining two modalities, such as X-ray and MRI, presents some significant challenges not encountered in the individual imaging labs alone. In this chapter we will discuss opportunities and limitations when operating a hybrid X-ray/MRI laboratory. Equipment, tools and resources, as well as clinical applications that benefit from a hybrid setting, are also reviewed.


Transjugular Intrahepatic Portosystemic Shunting Cone Beam Compute Tomography Uterine Artery Embolization Hybrid Imaging Cone Beam Compute Tomography Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Buecker A, Neuerburg JM et al (2001) MR-guided percutaneous drainage of abdominal fluid collections in combination with X-ray fluoroscopy: initial clinical experience. Eur Radiol 11(4):670–674PubMedCrossRefGoogle Scholar
  2. Catana C, Procissi D et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Nat Acad Sci U S A 105(10):3705–3710CrossRefGoogle Scholar
  3. Davis SC, Samkoe KS et al (2010) MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Academic radiol 17(3):271–276CrossRefGoogle Scholar
  4. de Silva R, Gutierrez LF et al (2006) X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation 114(22):2342–2350PubMedCrossRefGoogle Scholar
  5. Dick A, Raman V et al (2005) Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined X-ray/MRI suite. Catheter Cardiovasc Interv 64(3):265–274PubMedCrossRefGoogle Scholar
  6. Dori Y, Sarmiento M et al (2011) X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ Cardiovasc imaging 4(4):415–424PubMedCrossRefGoogle Scholar
  7. Fahrig R, Butts K et al (2001) A truly hybrid interventional MR/X-ray system: feasibility demonstration. J Magn Reson Imaging 13(2):294–300PubMedCrossRefGoogle Scholar
  8. Fahrig R, Wen Z et al (2005) Performance of a static-anode/flat-panel X-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid X-ray/MR imaging system. Med Phys 32(6):1775–1784PubMedCrossRefGoogle Scholar
  9. Fallone BG, Murray B et al (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36(6):2084–2088PubMedCrossRefGoogle Scholar
  10. Fischer GS, Deguet A et al (2007) MRI image overlay: application to arthrography needle insertion. Comput Aided Surg: Off J Int Soc Comput Aided Surg 12(1):2–14Google Scholar
  11. Freeman-Walsh CB, Fahrig R et al (2008) A hybrid radiography/MRI system for combining hysterosalpingography and MRI in infertility patients: initial experience. AJR Am J Roentgenol 190(2):W157–W160PubMedCrossRefGoogle Scholar
  12. Gaba RC, Jin B, Wang D, Lewandowski RJ, Ragin AB, Larson AC, Salem R, Omary RA (2012) Transcatheter intraarterial perfusion magnetic resonance imaging predicts locoregional chemoembolic delivery. AJR Am J Roentgenol (in press)Google Scholar
  13. Ganguly A, Wen Z et al (2005) Truly hybrid X-ray/MR imaging: toward a streamlined clinical system. Academic Radiol 12(9):1167–1177CrossRefGoogle Scholar
  14. George AK, Sonmez M et al (2011) Robust automatic rigid registration of MRI and X-ray using external fiducial markers for XFM-guided interventional procedures. Med Phys 38(1):125–141PubMedCrossRefGoogle Scholar
  15. Ginks MR, Lambiase PD et al (2011) A simultaneous X-Ray/MRI and noncontact mapping study of the acute hemodynamic effect of left ventricular endocardial and epicardial cardiac resynchronization therapy in humans. Circ Heart Fail 4(2):170–179PubMedCrossRefGoogle Scholar
  16. Govil A, Calkins H et al (2011) Fusion of imaging technologies: how, when, and for whom? J Interv Cardiac Electrophysiol: Int J Arrhythm Pacing 32(3):195–203CrossRefGoogle Scholar
  17. Gutierrez et al (2007) Catheterization and Cardiovasc Interv 70:773–782Google Scholar
  18. Gutierrez LF, Ozturk C et al (2008) A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system. Med Phys 35(3):997–1007PubMedCrossRefGoogle Scholar
  19. Hipwell JH, Penney GP et al (2003) Intensity-based 2-D-3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426PubMedCrossRefGoogle Scholar
  20. Huang X, Ren J et al (2009) Rapid dynamic image registration of the beating heart for diagnosis and surgical navigation. IEEE Trans Med Imaging 28(11):1802–1814PubMedCrossRefGoogle Scholar
  21. Hushek SG, Martin AJ et al (2008) MR systems for MRI-guided interventions. J Magn Resonance Imaging: JMRI 27(2):253–266CrossRefGoogle Scholar
  22. Jin B, Wang D et al (2011) Quantitative 4D transcatheter intraarterial perfusion MRI for standardizing angiographic chemoembolization endpoints. AJR Am J Roentgenol 197(5):1237–1243PubMedCrossRefGoogle Scholar
  23. Judenhofer MS, Wehrl HF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465PubMedCrossRefGoogle Scholar
  24. Kee ST, Ganguly A et al (2005) MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol: JVIR 16(2 Pt 1):227–234PubMedCrossRefGoogle Scholar
  25. Kim JH, Kocaturk O et al (2009) Mitral cerclage annuloplasty, a novel transcatheter treatment for secondary mitral valve regurgitation: initial results in swine. J Am Coll Cardiol 54(7):638–651PubMedCrossRefGoogle Scholar
  26. Lagendijk JJ, Raaymakers BW et al (2008) MRI/linac integration. Radiother Oncol: J Eur Soc Ther Radiol oncol 86(1):25–29CrossRefGoogle Scholar
  27. Martin AJ, Saloner DA et al (2005) Carotid stent delivery in an XMR suite: immediate assessment of the physiologic impact of extracranial revascularization. AJNR Am J Neuroradiol 26(3):531–537PubMedGoogle Scholar
  28. Meyer BC, Frericks BB et al (2007) Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: a new tool for vessel and soft tissue visualization. Cardiovasc Intervent Radiol 30(4):743–749PubMedCrossRefGoogle Scholar
  29. Moche M, Zajonz D et al (2010) MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Resonance Imaging: JMRI 31(4):964–974CrossRefGoogle Scholar
  30. Ning R, Chen B et al (2000) Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 19(9):949–963PubMedCrossRefGoogle Scholar
  31. Odille F, Pasquier C et al (2007) Noise cancellation signal processing method and computer system for improved real-time electrocardiogram artifact correction during MRI data acquisition. IEEE Trans Biomed Eng 54(4):630–640PubMedCrossRefGoogle Scholar
  32. Ratnayaka K, Faranesh AZ et al (2008) “Interventional cardiovascular magnetic resonance: still tantalizing.” J Cardiovasc Magn Resonance: Off J Soc Cardiovasc Magn Resonance 10:62CrossRefGoogle Scholar
  33. Ratnayaka K, Raman VK et al (2009) Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging. JACC Cardiovasc Interv 2(3):224–230PubMedCrossRefGoogle Scholar
  34. Rhode KS, Sermesant M et al (2005) A system for real-time XMR guided cardiovascular intervention. IEEE Trans Med Imaging 24(11):1428–1440PubMedCrossRefGoogle Scholar
  35. Schlemmer HP, Pichler BJ et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035PubMedCrossRefGoogle Scholar
  36. Spahn M, Heer V et al (2003) Flat-panel detectors in X-ray systems. Der Radiologe 43(5):340–350PubMedCrossRefGoogle Scholar
  37. Tomazevic D, Likar B et al (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 22(11):1407–1416PubMedCrossRefGoogle Scholar
  38. Tsekos NV, Khanicheh A et al (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9:351–387PubMedCrossRefGoogle Scholar
  39. Vin AP, Rhee TK et al (2007) Use of a combined MR imaging and interventional radiology suite for intraprocedural monitoring of uterine artery embolization. J Vasc Interv Radiol: JVIR 18(11):1362–1367PubMedCrossRefGoogle Scholar
  40. Vogl TJ, Balzer JO et al (2002) Hybrid MR interventional imaging system: combined MR and angiography suites with single interactive table. Feasibility study in vascular liver tumor procedures. Eur Radiol 12(6):1394–1400PubMedCrossRefGoogle Scholar
  41. Wacker FK, Vogt S et al (2006) An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 238(2):497–504PubMedCrossRefGoogle Scholar
  42. Wallace MJ, Kuo MD et al (2008) Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol: JVIR 19(6):799–813PubMedCrossRefGoogle Scholar
  43. Wu V, Barbash IM et al (2011) Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Resonance Imaging: JMRI 33(5):1184–1193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Siemens Corporation, Corporate Research and TechnologyBaltimoreUSA
  2. 2.Department of Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany

Personalised recommendations