Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Hybrid X-ray/MRI systems facilitate complex minimally invasive procedures by providing information about anatomy and physiology from the MRI while using all of the tools available for X-ray fluoroscopy. Combining two modalities, such as X-ray and MRI, presents some significant challenges not encountered in the individual imaging labs alone. In this chapter we will discuss opportunities and limitations when operating a hybrid X-ray/MRI laboratory. Equipment, tools and resources, as well as clinical applications that benefit from a hybrid setting, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buecker A, Neuerburg JM et al (2001) MR-guided percutaneous drainage of abdominal fluid collections in combination with X-ray fluoroscopy: initial clinical experience. Eur Radiol 11(4):670–674

    Article  PubMed  CAS  Google Scholar 

  • Catana C, Procissi D et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Nat Acad Sci U S A 105(10):3705–3710

    Article  CAS  Google Scholar 

  • Davis SC, Samkoe KS et al (2010) MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Academic radiol 17(3):271–276

    Article  Google Scholar 

  • de Silva R, Gutierrez LF et al (2006) X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation 114(22):2342–2350

    Article  PubMed  Google Scholar 

  • Dick A, Raman V et al (2005) Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined X-ray/MRI suite. Catheter Cardiovasc Interv 64(3):265–274

    Article  PubMed  Google Scholar 

  • Dori Y, Sarmiento M et al (2011) X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ Cardiovasc imaging 4(4):415–424

    Article  PubMed  Google Scholar 

  • Fahrig R, Butts K et al (2001) A truly hybrid interventional MR/X-ray system: feasibility demonstration. J Magn Reson Imaging 13(2):294–300

    Article  PubMed  CAS  Google Scholar 

  • Fahrig R, Wen Z et al (2005) Performance of a static-anode/flat-panel X-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid X-ray/MR imaging system. Med Phys 32(6):1775–1784

    Article  PubMed  CAS  Google Scholar 

  • Fallone BG, Murray B et al (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36(6):2084–2088

    Article  PubMed  CAS  Google Scholar 

  • Fischer GS, Deguet A et al (2007) MRI image overlay: application to arthrography needle insertion. Comput Aided Surg: Off J Int Soc Comput Aided Surg 12(1):2–14

    Google Scholar 

  • Freeman-Walsh CB, Fahrig R et al (2008) A hybrid radiography/MRI system for combining hysterosalpingography and MRI in infertility patients: initial experience. AJR Am J Roentgenol 190(2):W157–W160

    Article  PubMed  Google Scholar 

  • Gaba RC, Jin B, Wang D, Lewandowski RJ, Ragin AB, Larson AC, Salem R, Omary RA (2012) Transcatheter intraarterial perfusion magnetic resonance imaging predicts locoregional chemoembolic delivery. AJR Am J Roentgenol (in press)

    Google Scholar 

  • Ganguly A, Wen Z et al (2005) Truly hybrid X-ray/MR imaging: toward a streamlined clinical system. Academic Radiol 12(9):1167–1177

    Article  Google Scholar 

  • George AK, Sonmez M et al (2011) Robust automatic rigid registration of MRI and X-ray using external fiducial markers for XFM-guided interventional procedures. Med Phys 38(1):125–141

    Article  PubMed  Google Scholar 

  • Ginks MR, Lambiase PD et al (2011) A simultaneous X-Ray/MRI and noncontact mapping study of the acute hemodynamic effect of left ventricular endocardial and epicardial cardiac resynchronization therapy in humans. Circ Heart Fail 4(2):170–179

    Article  PubMed  Google Scholar 

  • Govil A, Calkins H et al (2011) Fusion of imaging technologies: how, when, and for whom? J Interv Cardiac Electrophysiol: Int J Arrhythm Pacing 32(3):195–203

    Article  Google Scholar 

  • Gutierrez et al (2007) Catheterization and Cardiovasc Interv 70:773–782

    Google Scholar 

  • Gutierrez LF, Ozturk C et al (2008) A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system. Med Phys 35(3):997–1007

    Article  PubMed  Google Scholar 

  • Hipwell JH, Penney GP et al (2003) Intensity-based 2-D-3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426

    Article  PubMed  Google Scholar 

  • Huang X, Ren J et al (2009) Rapid dynamic image registration of the beating heart for diagnosis and surgical navigation. IEEE Trans Med Imaging 28(11):1802–1814

    Article  PubMed  Google Scholar 

  • Hushek SG, Martin AJ et al (2008) MR systems for MRI-guided interventions. J Magn Resonance Imaging: JMRI 27(2):253–266

    Article  Google Scholar 

  • Jin B, Wang D et al (2011) Quantitative 4D transcatheter intraarterial perfusion MRI for standardizing angiographic chemoembolization endpoints. AJR Am J Roentgenol 197(5):1237–1243

    Article  PubMed  Google Scholar 

  • Judenhofer MS, Wehrl HF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465

    Article  PubMed  CAS  Google Scholar 

  • Kee ST, Ganguly A et al (2005) MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol: JVIR 16(2 Pt 1):227–234

    Article  PubMed  Google Scholar 

  • Kim JH, Kocaturk O et al (2009) Mitral cerclage annuloplasty, a novel transcatheter treatment for secondary mitral valve regurgitation: initial results in swine. J Am Coll Cardiol 54(7):638–651

    Article  PubMed  Google Scholar 

  • Lagendijk JJ, Raaymakers BW et al (2008) MRI/linac integration. Radiother Oncol: J Eur Soc Ther Radiol oncol 86(1):25–29

    Article  Google Scholar 

  • Martin AJ, Saloner DA et al (2005) Carotid stent delivery in an XMR suite: immediate assessment of the physiologic impact of extracranial revascularization. AJNR Am J Neuroradiol 26(3):531–537

    PubMed  Google Scholar 

  • Meyer BC, Frericks BB et al (2007) Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: a new tool for vessel and soft tissue visualization. Cardiovasc Intervent Radiol 30(4):743–749

    Article  PubMed  Google Scholar 

  • Moche M, Zajonz D et al (2010) MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Resonance Imaging: JMRI 31(4):964–974

    Article  Google Scholar 

  • Ning R, Chen B et al (2000) Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 19(9):949–963

    Article  PubMed  CAS  Google Scholar 

  • Odille F, Pasquier C et al (2007) Noise cancellation signal processing method and computer system for improved real-time electrocardiogram artifact correction during MRI data acquisition. IEEE Trans Biomed Eng 54(4):630–640

    Article  PubMed  Google Scholar 

  • Ratnayaka K, Faranesh AZ et al (2008) “Interventional cardiovascular magnetic resonance: still tantalizing.” J Cardiovasc Magn Resonance: Off J Soc Cardiovasc Magn Resonance 10:62

    Article  Google Scholar 

  • Ratnayaka K, Raman VK et al (2009) Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging. JACC Cardiovasc Interv 2(3):224–230

    Article  PubMed  Google Scholar 

  • Rhode KS, Sermesant M et al (2005) A system for real-time XMR guided cardiovascular intervention. IEEE Trans Med Imaging 24(11):1428–1440

    Article  PubMed  Google Scholar 

  • Schlemmer HP, Pichler BJ et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035

    Article  PubMed  Google Scholar 

  • Spahn M, Heer V et al (2003) Flat-panel detectors in X-ray systems. Der Radiologe 43(5):340–350

    Article  PubMed  CAS  Google Scholar 

  • Tomazevic D, Likar B et al (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 22(11):1407–1416

    Article  PubMed  Google Scholar 

  • Tsekos NV, Khanicheh A et al (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9:351–387

    Article  PubMed  CAS  Google Scholar 

  • Vin AP, Rhee TK et al (2007) Use of a combined MR imaging and interventional radiology suite for intraprocedural monitoring of uterine artery embolization. J Vasc Interv Radiol: JVIR 18(11):1362–1367

    Article  PubMed  Google Scholar 

  • Vogl TJ, Balzer JO et al (2002) Hybrid MR interventional imaging system: combined MR and angiography suites with single interactive table. Feasibility study in vascular liver tumor procedures. Eur Radiol 12(6):1394–1400

    Article  PubMed  Google Scholar 

  • Wacker FK, Vogt S et al (2006) An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 238(2):497–504

    Article  PubMed  Google Scholar 

  • Wallace MJ, Kuo MD et al (2008) Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol: JVIR 19(6):799–813

    Article  PubMed  Google Scholar 

  • Wu V, Barbash IM et al (2011) Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Resonance Imaging: JMRI 33(5):1184–1193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilson, W.D., Wacker, F. (2012). Hybrid MRI Systems and Applications. In: Kahn, T., Busse, H. (eds) Interventional Magnetic Resonance Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_609

Download citation

  • DOI: https://doi.org/10.1007/174_2012_609

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20705-1

  • Online ISBN: 978-3-642-20706-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics