Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2011 Accesses

Abstract

In the past several decades, there has been great interest in the transplantation of stem cells to recapitulate organs with limited regenerative capacity. During this same period, the ability to image stem cells by labeling with MRI-visible contrast agents has proved to be an enabling technology for determining the engraftment and fate of these cells. A natural extension of MR-labeling of stem cells is the delivery of stem cells using MR interventional techniques. While the development of these interventional techniques is hindered in part by the need to develop user-friendly imaging interfaces, MR-compatible devices, and advanced physiologic monitoring capabilities, limited clinical trials with MR-labeled stem cells have been performed that suggest MR interventional techniques will offer a safe and more effective method to deliver the stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler ED, Bystrup A, Briley-Saebo KC, Mani V, Young W, Giovanonne S, Altman P, Kattman SJ, Frank JA, Weinmann HJ, Keller GM, Fayad ZA (2009) In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging 2(9):1114–1122

    PubMed  Google Scholar 

  • Ahrens ET, Young WB, Xu H, Pusateri LK (2011) Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. Biotechniques 50:229–234

    PubMed  CAS  Google Scholar 

  • Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Ocherashvilli A, Holbova R, Yosef O, Barbash IM, Leor J (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(Suppl I):I-38–I-45

    Google Scholar 

  • Arai T, Kofidis T, Bulte JW, De Bruin J, Venook RD, Berry GJ, Mcconnell MV, Quertermous T, Robbins RC, Yang PC (2006) Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 T. Magn Reson Med 55(1):203–209

    PubMed  Google Scholar 

  • Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA (2004) In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 15(4):351–360

    PubMed  CAS  Google Scholar 

  • Arifin DR, Long CM, Gilad AA, Alric C, Roux S, Tillement O, Link TW, Arepally A, Bulte JW (2011) Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 260(3):790–798

    PubMed  Google Scholar 

  • Babic M, Horak D, Trchova M, Jendelova P, Glogarova K, Lesny P, Herynek V, Hajek M, Sykova E (2008) Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19(3):740–750

    PubMed  CAS  Google Scholar 

  • Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JW (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13(8):986–991

    PubMed  CAS  Google Scholar 

  • Barnett BP, Ruiz-Cabello J, Hota P, Liddell R, Walczak P, Howland V, Chacko VP, Kraitchman DL, Arepally A, Bulte JW (2010) Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 258(1):182–191

    PubMed  Google Scholar 

  • Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JW (2011a) Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat Protoc 6(8):1142–1151

    PubMed  CAS  Google Scholar 

  • Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C, Walczak P, Gilson WD, Chacko VP, Kraitchman DL, Arepally A, Bulte JW (2011b) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6(4):251–259

    PubMed  CAS  Google Scholar 

  • Berman SC, Galpoththawela C, Gilad AA, Bulte JW, Walczak P (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574

    PubMed  Google Scholar 

  • Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M (2009) The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials 30(16):2985–2994

    PubMed  CAS  Google Scholar 

  • Bock M, Volz S, Zuhlsdorff S, Umathum R, Fink C, Hallscheidt P, Semmler W (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19(5):580–589

    PubMed  Google Scholar 

  • Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JW, Moonen CT, Ripoche J, Grenier N (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233(3):781–789

    PubMed  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5(6):567–584

    PubMed  CAS  Google Scholar 

  • Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS ONE 6(11):e27877

    PubMed  CAS  Google Scholar 

  • Cahill KS, Gaidosh G, Huard J, Silver X, Byrne BJ, Walter GA (2004) Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation 78(11):1626–1633

    PubMed  Google Scholar 

  • Callera F, De Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev 16(3):461–466

    PubMed  Google Scholar 

  • Chen AP, Hurd RE, Gu YP, Wilson DM, Cunningham CH (2011) (13)C MR reporter probe system using dynamic nuclear polarization. NMR Biomed 24(5):514–520

    PubMed  CAS  Google Scholar 

  • Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7(2):109–117

    PubMed  CAS  Google Scholar 

  • Corti R, Badimon J, Mizsei G, Macaluso F, Lee M, Licato P, Viles-Gonzalez JF, Fuster V, Sherman W (2005) Real time magnetic resonance guided endomyocardial local delivery. Heart 91(3):348–353

    PubMed  CAS  Google Scholar 

  • Cunningham CH, Arai T, Yang PC, Mcconnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005

    PubMed  CAS  Google Scholar 

  • Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60(3):595–603

    PubMed  Google Scholar 

  • De Silva R, Gutierrez LF, Raval AN, McVeigh ER, Ozturk C, Lederman RJ (2006) X-Ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections. Validation in a swine model of myocardial infarction. Circulation 114(22):2342–2350

    PubMed  Google Scholar 

  • De Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, Van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413

    PubMed  Google Scholar 

  • Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108(23):2899–2904

    PubMed  Google Scholar 

  • Duckett SG, Ginks M, Shetty AK, Knowles BR, Totman JJ, Chiribiri A, Ma YL, Razavi R, Schaeffter T, Carr-White G, Rhode K, Rinaldi CA (2011) Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with X-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace 13(2):285–286

    PubMed  Google Scholar 

  • Dumoulin CL, Mallozzi RP, Darrow RD, Schmidt EJ (2010) Phase-field dithering for active catheter tracking. Magn Reson Med 63(5):1398–1403

    PubMed  Google Scholar 

  • Dunning MD, Lakatos A, Loizou L, Kettunen M, Ffrench-Constant C, Brindle KM, Franklin RJ (2004) Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24(44):9799–9810

    PubMed  CAS  Google Scholar 

  • Ebert SN, Taylor DG, Nguyen HL, Kodack DP, Beyers RJ, Xu Y, Yang Z, French BA (2007) Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 25(11):2936–2944

    PubMed  Google Scholar 

  • Engberink RD, Van Der Pol SM, Walczak P, Van Der Toorn A, Viergever MA, Dijkstra CD, Bulte JW, De Vries HE, Blezer EL (2010) Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol Imaging 9(5):268–277

    PubMed  Google Scholar 

  • Farrar CT, Dai G, Novikov M, Rosenzweig A, Weissleder R, Rosen BR, Sosnovik DE (2008) Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed 21(5):453–463

    PubMed  CAS  Google Scholar 

  • Frank JA, Zywicke H, Jordan EK, Mitchell J, Lewis BK, Bryant LH Jr, Bulte JWM (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9:S484–S487

    PubMed  Google Scholar 

  • Fu Y, Azene N, Xu Y, Kraitchman DL (2011) Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques. Imaging Med 3(4):473–486

    PubMed  Google Scholar 

  • Garot J, Unterseeh T, Teiger E, Champagne S, Chazaud B, Gherardi R, Hittinger L, Gueret P, Rahmouni A, Sonnet C, Le Corvoisier P, Benhaiem-Sigaux N, Su J, Merlet P (2003) Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41(10):1841–1846

    PubMed  Google Scholar 

  • Gilad AA, Mcmahon MT, Walczak P, Winnard PT Jr, Raman V, Van Laarhoven HW, Skoglund CM, Bulte JW, Van Zijl PC (2007a) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25(2):217–219

    PubMed  CAS  Google Scholar 

  • Gilad AA, Winnard PT Jr, Van Zijl PC, Bulte JW (2007b) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3):275–290

    PubMed  CAS  Google Scholar 

  • Gilad AA, Walczak P, Mcmahon MT, Na HB, Lee JH, An K, Hyeon T, Van Zijl PC, Bulte JW (2008) MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn Reson Med 60(1):1–7

    PubMed  CAS  Google Scholar 

  • Girard OM, Du J, Agemy L, Sugahara KN, Kotamraju VR, Ruoslahti E, Bydder GM, Mattrey RF (2011) Optimization of iron oxide nanoparticle detection using ultrashort echo time pulse sequences: comparison of T1, T2*, and synergistic T1-T2* contrast mechanisms. Magn Reson Med 65(6):1649–1660

    PubMed  CAS  Google Scholar 

  • Glud AN, Hedegaard C, Nielsen MS, Soorensen JC, Bendixen C, Jensen PH, Mogensen PH, Larsen K, Bjarkam CR (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Gottingen minipig CNS. Acta Neurobiol Exp (Wars) 71(4):508–518

    Google Scholar 

  • Golovko DM, Henning T, Bauer JS, Settles M, Frenzel T, Mayerhofer A, Rummeny EJ, Daldrup-Link HE (2010) Accelerated stem cell labeling with ferucarbotran and protamine. Eur Radiol 20(3):640–648

    PubMed  Google Scholar 

  • Gutierrez LF, Schechter G, Lederman RJ, McVeigh ER, Ozturk C (2005) Distortion correction, calibration and registration: toward and integrated MR and X-ray interventional suite. Proc SPIE 5744:146–156

    Google Scholar 

  • Guttman MA, Lederman RJ, Sorger JM, McVeigh ER (2002) Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson 4(4):431–442

    PubMed  Google Scholar 

  • Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, Desilva R, Karmarkar P, Lederman RJ, McVeigh ER (2007) Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging 26(6):1429–1435

    PubMed  Google Scholar 

  • Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, Capela A, Greve J, Malenka RC, Moseley ME, Palmer TD, Steinberg GK (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 104(24):10211–10216

    PubMed  CAS  Google Scholar 

  • He G, Zhang H, Wei H, Wang Y, Zhang X, Tang Y, Wei Y, Hu S (2007) In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: a novel method to trace the transplanted cells. Int J Cardiol 114(1):4–10

    PubMed  Google Scholar 

  • Higuchi T, Anton M, Dumler K, Seidl S, Pelisek J, Saraste A, Welling A, Hofmann F, Oostendorp RA, Gansbacher B, Nekolla SG, Bengel FM, Botnar RM, Schwaiger M (2009) Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 50(7):1088–1094

    PubMed  CAS  Google Scholar 

  • Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108(8):1009–1014

    PubMed  Google Scholar 

  • Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99(25):16267–16272

    PubMed  CAS  Google Scholar 

  • Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76(2):232–243

    PubMed  CAS  Google Scholar 

  • Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, Zhang R, Li L, Lu M, Meng H, Arbab AS, Hu J, Li QJ, Pourabdollah Nejad DS, Athiraman H, Chopp M (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28(3):698–707

    PubMed  Google Scholar 

  • Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW, Atalar E (2004) MR-trackable intramyocardial injection catheter. Mag Reson Med 51(6):1163–1172

    CAS  Google Scholar 

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194

    PubMed  Google Scholar 

  • Kedziorek DA, Kraitchman DL (2010) Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol Biol 660:171–183

    PubMed  CAS  Google Scholar 

  • Kim D, Chun BG, Kim YK, Lee YH, Park CS, Jeon I, Cheong C, Hwang TS, Chung H, Gwag BJ, Hong KS, Song J (2008) In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant 16(10):1007–1012

    PubMed  Google Scholar 

  • Kim J, Arifin DR, Muja N, Kim T, Gilad AA, Kim H, Arepally A, Hyeon T, Bulte JW (2011) Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angew Chem Int Ed Engl 50(10):2317–2321

    PubMed  CAS  Google Scholar 

  • Kraitchman DL, Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103(2):105–113

    PubMed  CAS  Google Scholar 

  • Kraitchman DL, Gilson WD, Lorenz CH (2008) Stem cell therapy: MRI guidance and monitoring. J Magn Reson Imaging 27(2):299–310

    PubMed  Google Scholar 

  • Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293

    PubMed  Google Scholar 

  • Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ (2012) An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 70 Operative Neurosurgery 1:ons95–ons103

    Google Scholar 

  • Lee ES, Chan J, Shuter B, Tan LG, Chong MS, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang SC (2009) Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 27(8):1921–1931

    PubMed  CAS  Google Scholar 

  • Leung DA, Debatin JF, Wildermuth S, Mckinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E, Von Schulthess GK (1995) Intravascular MR tracking catheter: preliminary experimental evaluation. AJR Am J Roentgenol 164(5):1265–1270

    PubMed  CAS  Google Scholar 

  • Li Z, Suzuki Y, Huang M, Cao F, Xie X, Connolly AJ, Yang PC, Wu JC (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26(4):864–873

    PubMed  CAS  Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    PubMed  CAS  Google Scholar 

  • Link TW, Woodrum D, Gilson WD, Pan L, Qian D, Kraitchman DL, Bulte JW, Arepally A, Weiss CR (2011) MR-guided portal vein delivery and monitoring of magnetocapsules: assessment of physiologic effects on the liver. J Vasc Interv Radiol 22(9):1335–1340

    PubMed  Google Scholar 

  • Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60(1):73–81

    PubMed  Google Scholar 

  • Mani V, Briley-Saebo KC, Hyafil F, Itskovich V, Fayad ZA (2006a) Positive magnetic resonance signal enhancement from ferritin using a GRASP (GRE acquisition for superparamagnetic particles) sequence: ex vivo and in vivo study. J Cardiovasc Magn Reson 8(1):49–50

    Google Scholar 

  • Mani V, Saebo KC, Itskovich V, Samber DD, Fayad ZA (2006b) GRadient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135

    PubMed  CAS  Google Scholar 

  • Martin AJ, Larson PS, Ostrem JL, Starr PA (2009) Interventional magnetic resonance guidance of deep brain stimulator implantation for Parkinson disease. Top Magn Reson Imaging 19(4):213–221

    PubMed  Google Scholar 

  • Mcmahon MT, Gilad AA, Deliso MA, Berman SM, Bulte JW, Van Zijl PC (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60(4):803–812

    PubMed  CAS  Google Scholar 

  • Mills PH, Hitchens TK, Foley LM, Link T, Ye Q, Weiss CR, Thompson JD, Gilson WD, Arepally A, Melick JA, Kochanek PM, Ho C, Bulte JW, Ahrens ET (2012) Automated detection and characterization of SPIO-labeled cells and capsules using magnetic field perturbations. Magn Reson Med 67(1):278–289

    PubMed  Google Scholar 

  • Mintorovitch J, Shamsi K (2000) Eovist injection and resovist injection: two new liver-specific contrast agents for MRI. Oncology (Williston Park) 14(6 Suppl 3):37–40

    CAS  Google Scholar 

  • Misselwitz B, Platzek J, Weinmann HJ (2004) Early MR lymphography with gadofluorine M in rabbits. Radiology 231(3):682–688

    PubMed  Google Scholar 

  • Modo M, Beech JS, Meade TJ, Williams SC, Price J (2009) A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage 47(Suppl 2):T133–T142

    PubMed  Google Scholar 

  • Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, Williams SC (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21(1):311–317

    PubMed  Google Scholar 

  • Muja N, Cohen ME, Zhang J, Kim H, Gilad AA, Walczak P, Ben-Hur T, Bulte JW (2011) Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: a serial MR imaging study. Magn Reson Med 65(6):1738–1749

    PubMed  Google Scholar 

  • Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, Roguin A, Dickfeld TL, Ashikaga H, Calkins H, Berger RD, Bluemke DA, Lardo AC, Halperin HR (2008) Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation 118(3):223–229

    PubMed  Google Scholar 

  • Nolte IS, Gungor S, Erber R, Plaxina E, Scharf J, Misselwitz B, Gerigk L, Przybilla H, Groden C, Brockmann MA (2008) In vitro labeling of glioma cells with gadofluorine M enhances T1 visibility without affecting glioma cell growth or motility. Magn Reson Med 59(5):1014–1020

    PubMed  CAS  Google Scholar 

  • Ocali O, Atalar E (1997) Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 37(1):112–118

    PubMed  CAS  Google Scholar 

  • Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21(8):1647–1654

    PubMed  CAS  Google Scholar 

  • Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S (2007) Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25(10):2583–2592

    PubMed  Google Scholar 

  • Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, Starr PA, Martin AJ, Lonser RR, Federoff HJ, Forsayeth JR, Bankiewicz KS (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19(6):1048–1057

    PubMed  CAS  Google Scholar 

  • Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA, Lanza GM, Bulte JW (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60(6):1506–1511

    PubMed  Google Scholar 

  • Runge VM, Ai T, Hao D, Hu X (2011) The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance. Invest Radiol 46(12):807–816

    PubMed  CAS  Google Scholar 

  • Saeed M, Lee R, Martin A, Weber O, Krombach GA, Schalla S, Lee M, Saloner D, Higgins CB (2004) Transendocardial delivery of extracellular myocardial markers by using combination X-ray/MR fluoroscopic guidance: feasibility study in dogs. Radiology 231(3):689–696

    PubMed  Google Scholar 

  • Schmidt PP, Toft KG, Skotland T, Andersson K (2002) Stability and transmetallation of the magnetic resonance contrast agent MnDPDP measured by EPR. J Biol Inorg Chem 7(3):241–248

    PubMed  CAS  Google Scholar 

  • Shapiro EM, Koretsky AP (2008) Convertible manganese contrast for molecular and cellular MRI. Magn Reson Med 60(2):265–269

    PubMed  Google Scholar 

  • Sponarova D, Horak D, Trchova M, Jendelova P, Herynek V, Mitina N, Zaichenko A, Stoika R, Lesny P, Sykova E (2011) The use of oligoperoxide-coated magnetic nanoparticles to label stem cells. J Biomed Nanotechnol 7(3):384–394

    PubMed  CAS  Google Scholar 

  • Starr PA, Martin AJ, Larson PS (2009) Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am 20(2):193–203

    PubMed  Google Scholar 

  • Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58(5):1072–1077

    PubMed  Google Scholar 

  • Stuckey DJ, Carr CA, Martin-Rendon E, Tyler DJ, Willmott C, Cassidy PJ, Hale SJ, Schneider JE, Tatton L, Harding SE, Radda GK, Watt S, Clarke K (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24(8):1968–1975

    PubMed  CAS  Google Scholar 

  • Sumner JP, Shapiro EM, Maric D, Conroy R, Koretsky AP (2009) In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype. Neuroimage 44(3):671–678

    PubMed  Google Scholar 

  • Sykova E, Jendelova P (2005) Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci 1049:146–160

    PubMed  Google Scholar 

  • Sykova E, Jendelova P (2006) Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis 3(1–2):62–67

    PubMed  Google Scholar 

  • Tallheden T, Nannmark U, Lorentzon M, Rakotonirainy O, Soussi B, Waagstein F, Jeppsson A, Sjogren-Jansson E, Lindahl A, Omerovic E (2006) In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79(10):999–1006

    PubMed  CAS  Google Scholar 

  • Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E, Schar M, Gerstenblith G, Weiss RG, Marban E, Abraham MR (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117(12):1555–1562

    PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  • Toft KG, Hustvedt SO, Grant D, Martinsen I, Gordon PB, Friisk GA, Korsmo AJ, Skotland T (1997) Metabolism and pharmacokinetics of MnDPDP in man. Acta Radiol 38(4 Pt 2):677–689

    PubMed  CAS  Google Scholar 

  • Tomkowiak MT, Klein AJ, Vigen KK, Hacker TA, Speidel MA, Vanlysel MS, Raval AN (2011) Targeted transendocardial therapeutic delivery guided by MRI-X-ray image fusion. Catheter Cardiovasc Interv 78(3):468–478

    PubMed  Google Scholar 

  • Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8(3):701–706

    PubMed  CAS  Google Scholar 

  • Tseng CL, Shih IL, Stobinski L, Lin FH (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31(20):5427–5435

    PubMed  CAS  Google Scholar 

  • Tzifa A, Krombach GA, Kramer N, Kruger S, Schutte A, Von Walter M, Schaeffter T, Qureshi S, Krasemann T, Rosenthal E, Schwartz CA, Varma G, Buhl A, Kohlmeier A, Bucker A, Gunther RW, Razavi R (2010) Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv 3(6):585–592

    PubMed  Google Scholar 

  • Vuu K, Xie J, Mcdonald MA, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M, Guccione S (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999

    PubMed  CAS  Google Scholar 

  • Wacker FK, Elgort D, Hillenbrand CM, Duerk JL, Lewin JS (2004) The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI. AJR Am J Roentgenol 183(2):391–395

    PubMed  Google Scholar 

  • Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54(4):769–774

    PubMed  CAS  Google Scholar 

  • Walczak P, Ruiz-Cabello J, Kedziorek DA, Gilad AA, Lin S, Barnett B, Qin L, Levitsky H, Bulte JW (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2(2):89–94

    PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, Van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39(5):1569–1574

    PubMed  CAS  Google Scholar 

  • Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355

    PubMed  CAS  Google Scholar 

  • Xie TD, Sun L, Tsong TY (1990) Study of mechanisms of electric field-induced DNA transfection. I. DNA entry by surface binding and diffusion through membrane pores. Biophys J 58(1):13–19

    PubMed  CAS  Google Scholar 

  • Yamada M, Gurney PT, Chung J, Kundu P, Drukker M, Smith AK, Weissman IL, Nishimura D, Robbins RC, Yang PC (2009) Manganese-guided cellular MRI of human embryonic stem cell and human bone marrow stromal cell viability. Magn Reson Med 62(4):1047–1054

    PubMed  CAS  Google Scholar 

  • Yang L, Xia Y, Zhao H, Zhao J, Zhu X (2006) Magnetic resonance imaging of transplanted neural stem cells in Parkinson disease rats. J Huazhong Univ Sci Technol Med Sci 26(4):489–492

    PubMed  Google Scholar 

  • Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H, Ho C (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118(2):149–156

    PubMed  Google Scholar 

  • Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33(2):200–208

    PubMed  CAS  Google Scholar 

  • Yu J-X, Kodibagkar VD, Hallac RR, Liu L, Mason RP (2012) Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase. Bioconjugate Chem 23(3):596–603

    CAS  Google Scholar 

  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Jiang Q, Zhang R, Zhang L, Wang L, Arniego P, Ho KL, Chopp M (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53(2):259–263

    PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    PubMed  CAS  Google Scholar 

  • Zhou R, Idiyatullin D, Moeller S, Corum C, Zhang H, Qiao H, Zhong J, Garwood M (2010) SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magn Reson Med 63(5):1154–1161

    PubMed  Google Scholar 

  • Zhu J, Zhou L, Xingwu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355(22):2376–2378

    PubMed  CAS  Google Scholar 

  • Zuehlsdorff S, Umathum R, Volz S, Hallscheidt P, Fink C, Semmler W, Bock M (2004) MR coil design for simultaneous tip tracking and curvature delineation of a catheter. Magn Reson Med 52(1):214–218

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dara L. Kraitchman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehtiati, T., Kraitchman, D.L. (2012). MRI-Guided Stem Cell Therapy. In: Kahn, T., Busse, H. (eds) Interventional Magnetic Resonance Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_605

Download citation

  • DOI: https://doi.org/10.1007/174_2012_605

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20705-1

  • Online ISBN: 978-3-642-20706-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics