Part of the Medical Radiology book series (MEDRAD)


The utility of FDG PET/CT in malignancies of the genitourinary tract varies significantly with tumor type, stage, and location. To best implement FDG PET/CT into the clinical care of patients with urologic malignancies, it is critical to understand the differences in tumor metabolism at diagnosis as well as the changes in advanced disease. With increasing economic restrictions in healthcare, it is critical for the nuclear physician to have a clear understanding of what modalities can provide the most accurate information for best therapy choice. GU tract cancers differ in glycolytic activity and therefore the indications for FDG PET/CT are specific to each tumor type. Within this category of neoplasm, FDG PET/CT is best suited to restaging and problem solving. 18F-fluoride PET/CT and non-commercially available positron choline analogs provide improved accuracy in restaging select patients with treated prostate cancer.


Prostate Specific Antigen Gleason Score Prostate Specific Antigen Level Choline Uptake Osseous Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Cancer Society (2006) Cancer facts and figures 2007. Publication no. 500807. American Cancer Society, AtlantaGoogle Scholar
  2. Anjos DA, Etchebehere EC, Ramos CD, Santos AO, Albertotti C, Camargo EE (2007) 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med 48:764–770PubMedCrossRefGoogle Scholar
  3. Apolo AB, Pandit-Taskar N, Morris MJ (2008) Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 49:2031–2041PubMedCrossRefGoogle Scholar
  4. Bachor R, Kotzerke J, Reske SN, Hautmann R (1999) Lymph node staging of bladder neck carcinoma with positron emission tomography. Urol A 38:46–50CrossRefGoogle Scholar
  5. Becherer A, De Sants M, Karanikas G, Szabo M, Bokemeyer C, Dohmen BM, Pont J, Dudczak R, Dittrich C, Kletter K (2005) FDG PET is superior to CT in the prediction of viable tumor in post-chemotherapy seminoma residuals. Eur J Radiol 54:284–288PubMedCrossRefGoogle Scholar
  6. Beheshti M, Vali R, Waldenberger P et al (2009) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 11:446–454PubMedCrossRefGoogle Scholar
  7. Breeuwsma AJ, Pruim J, van den Bergh AC, Leliveld AM, Nijman RJ, Dierckx RA, de Jong IJ (2010) Detection of local, regional, and distant recurrence in patients with psa relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 77:160–164Google Scholar
  8. Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP, Kao A (2003) Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomgraphy in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 70:311–315PubMedCrossRefGoogle Scholar
  9. Chen YW, Huang MY, Hou PN, Chang CC, Lee CS, Lian SL (2009) FDG PET/CT diuretic imaging techniques for differentiating invasive pelvic cancer. Clin Nucl Med 34:233–235PubMedCrossRefGoogle Scholar
  10. Chou CH, Figg WD (2005) Molecular and Phenotypic Heterogeneity of metastatic prostate cancer. Cancer Biol Ther 4:166–167CrossRefGoogle Scholar
  11. Cremerius U, Effert PJ, Adam G, Sabri O, Zimny M, Wagenknecht G, Jakse G, Buell U (1998) FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39:815–822PubMedGoogle Scholar
  12. Crispen PL, Boorjian SA, Lohse CM, Leibovich BC, Kwon ED (2008) Predicting disease progression after nephrectomy for localized renal cell carcinoma: the utility of prognostic models and biomarkers. Cancer 113:450–460PubMedCrossRefGoogle Scholar
  13. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, Lang A, Kletter K, Dohmen BM, Dittrich C, Pont J (2004) 2-18 fluoro-deoxy-d-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22:1034–1039PubMedCrossRefGoogle Scholar
  14. de Wit M, Brenner W, Hartmann M, Kotzerke J, Hellwig D, Lehmann J, Franzius C, Kliesch S, Schlemmer M, Tatsch K, Heicappoll R, Geworski L, Amthauer H, Dohmen BM, Schirrmeister H, Cremerius U, Bokemeyer C, Bares R (2008) [18F]-FDG-PET in clinical stage I/II non-seminomatous germ cell tumours: results of the german multicenter trial. Ann Oncol 19:1619–1623PubMedCrossRefGoogle Scholar
  15. Dixon FJ, Moore RA (1953) Testicular tumors; a clinicopathological study. Cancer 6:427–454PubMedCrossRefGoogle Scholar
  16. Donahue JP (1984) Metastatic pathways of nonseminomatous germ cell tumors. Semin Urol 2:217–229Google Scholar
  17. Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L (2005) FDG-PET for pre-operative staging of bladder cancer. Eur J Nucl Med Mol Imaging 32:1412–1417PubMedCrossRefGoogle Scholar
  18. Effert P, Beniers AJ, Tamimi Y, Handt S (2004) Jakse G Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate carcinoma. Anticancer Res 24:2057–2063Google Scholar
  19. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155:994–998PubMedCrossRefGoogle Scholar
  20. Eschmann SM, Pfannenberg AC, Rieger A et al (2007) Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 46:161–168PubMedGoogle Scholar
  21. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high -risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multifield- of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMedGoogle Scholar
  22. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, Canini R, Grigioni W, Boschi S, Marengo M, Pettinato C, Salizzoni E, Monetti N, Franchi R, Fanti S (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT histopathologic step-section analysis. J Nucl Med 46:1642–1649PubMedGoogle Scholar
  23. Fossa SD, Oliver RT, Stenning SP, Horwich A, Wilkinson P, Read G, Mead GM, Roberts JT, Rustin G, Cullen MH, Kaye SB, Harland SJ, Cook P (1997) Prognostic factors for patients with advanced seminoma treated with platinum-based chemotherapy. Eur J Cancer 33:1380–1387PubMedCrossRefGoogle Scholar
  24. Fuccio C, Castellucci P, Schiavina R et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24:485–492PubMedCrossRefGoogle Scholar
  25. Ganjoo KN, Chan R, Sharma M, Einhorn LH (1999) Positron emission tomography scans in the evaluation of postchemotherapy residual masses in patients with seminoma. J Clin Oncol 17:3457–3460PubMedGoogle Scholar
  26. Garner MJ, Turner MC, Ghadirian P, Krewski D (2005) Epidemiology of testicular cancer: an overview. Int J Cancer 116:331–339PubMedCrossRefGoogle Scholar
  27. Giovacchini G, Picchio M, Coradeschi E et al (2010) Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37:301–309PubMedCrossRefGoogle Scholar
  28. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, Feschi M, Fazio F, Messa C (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumor stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35:1065–1073PubMedCrossRefGoogle Scholar
  29. Goldberg MA, Mayo-Smith WW, Papanicolaou N, Fischman AJ, Lee MJ (1997) FDG PET characterization of renal masses: preliminary experience. Clin Radiol 52:510–515PubMedCrossRefGoogle Scholar
  30. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC (2001) Long-term biochemical disease-free and cancer –specific survival following anatomic radical retropubic prostatectomy: the 15-year Johns Hopkins experience. Urol Clin North Am 28:555–565PubMedCrossRefGoogle Scholar
  31. Heicappell R, Muller-Matheis V, Reinhardt M, Vosberg H, Gerharz CD, Muller-Gartner H, Ackermann R (1999) Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18)F]-2-deoxy-d-glucose. Eur Urol 36:582–587PubMedCrossRefGoogle Scholar
  32. Hernandez DJ, Nielson ME, Han M, Trock BJ, Partin AW, Walsh PC, Epstein JI (2008) Natural History of pathologically organ-confined (pT2), Gleason score 6 or less, prostate cancer after radical prostatectomy. Urology 72:172–6Google Scholar
  33. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, Coleman RE (2008) Relationship between cancer type and impact of PET and PET/CT on intended patient management: findings of the national oncologic PET registry. J Nucl Med 49:1928–1935PubMedCrossRefGoogle Scholar
  34. Hinz S, Schrader M, Kempkensteffen C, Bare R, Brenner W, Krege S, Franzius C, Kliesch S, Heicappel R, Miller K, de Wit M (2008) The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. J Urol 179:936–940PubMedCrossRefGoogle Scholar
  35. Hofer C, Laubenbachner C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31–35PubMedCrossRefGoogle Scholar
  36. Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO (2008) The diagnostic accuracy of CT and MRI in staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395PubMedCrossRefGoogle Scholar
  37. Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35:253–263PubMedCrossRefGoogle Scholar
  38. Igerc I, Kohlfurst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, Lind P (2008) The value of 18F-choline PET/CT in patient with elevated PSA-level and negative prostate needle biopsyfor localization of prostate cancer. Eur J Nucl Med Mol Imaging 35:976–983PubMedCrossRefGoogle Scholar
  39. Jadvar H, Quan V, Henderson RW, Conti PS (2008) [F-18]-Fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent metastatic bladder transitional cell carcinoma. Int J Clin Oncol 13:42–47PubMedCrossRefGoogle Scholar
  40. Jadvar H, Xiankui L, Shahanian A, Park R, Tohme M, Pinski J, Conti PS (2005) Glucose metabolism of human prostate cancer mouse xenografts. Mol Imaging 4:91–97PubMedGoogle Scholar
  41. Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809PubMedCrossRefGoogle Scholar
  42. Kibel AS, Dehdashti F, Katz MD, Klim AP, Grubb RL, Humphrey PA, Siegel C, Cao D, Gao F, Siegel BA (2009) Prospective study of [18F] fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder cancer. J Clin Oncol 27:4314–4320PubMedCrossRefGoogle Scholar
  43. Kitajima K, Nakamoto Y, Send M, Onishi Y, Okizuka H, Sugimura K (2007) Normal uptake of 18-F FDG in the testes: an assessment by PET/CT. Ann Nucl Med 21:405–410PubMedCrossRefGoogle Scholar
  44. Kosida S, Fisher S, Kison PV, Wahl RL, Grossman HB (1997) Uptake of 2-doxy-2[18F] fluoro-d-glucose in the normal testis: retrospective PET study and animal experiment. Ann Nucl Med 11:195–199CrossRefGoogle Scholar
  45. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in clinically organ-confined prostate cancer. Urology 57:108–111PubMedCrossRefGoogle Scholar
  46. Logothetis CJ, Navone NM, Lin SH (2008) Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin Cancer Res 14:1599–1602PubMedCrossRefGoogle Scholar
  47. Majhail NS, Urbain JL, Albani JM, Kanvinde MH, Rice TW, Novick AC, Mekhail TM, Olencki TE, Elson P, Bukowski RM (2003) F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 21:3995–4000PubMedCrossRefGoogle Scholar
  48. Manecksha RP, Fitzpatrick JM (2009) Epidemiology of testicular cancer. BJU 104:1329–1333CrossRefGoogle Scholar
  49. Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, Bertaccini A, Manferrari F, Castellucci P, Fanti S, Canini R, Grigioni WF, D’Errico Grigioni A (2006) 11C-choline postron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12- core biopsy. J Urol 176:954–960PubMedCrossRefGoogle Scholar
  50. Miyakita H, Tokunaga M, Onda H, Usui Y, Kinoshita H, Kawamura N, Yasuda S (2002) Significance of 18F-fuorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 9:15–18PubMedCrossRefGoogle Scholar
  51. Morgan K, Srinivas S, Freiha F (2004) Synchronous solitary metastasis of transitional cell carcinoma of the bladder to the testis. Urology 64:808–809PubMedCrossRefGoogle Scholar
  52. Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlecki K, Verbel D, Schwartz L, Larson SM, Scher HI (2002) Fluorinated deoxyglucose positron emission tomography in progressive metastatic prostate cancer. Urology 59:913–918PubMedCrossRefGoogle Scholar
  53. Murphy RC, Kawashima A, Peller PJ (2011) The utility of 11C-choline PET/CT for imaging prostate cancer: a pictorial guide. AJR Am J Roentgenol 196(6):1390–1398PubMedCrossRefGoogle Scholar
  54. Oechsle K, Hartmann M, Brenner W, Venz S, Weissbach L, Franzius C, Kliesch S, Mueller S, Krege S, Heicappell R, Bares R, Bokemeyer C, de Wit M (2008) [18F] Flurodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol 26:5930–5935PubMedCrossRefGoogle Scholar
  55. Osman MM, Cohade C, Fishman EK, Wahl RL (2005) Clinically significant findings in unenhaced CT portion of the PET/CT studies: frequency in 250 patients. J Nucl Med 46:1352–1355PubMedGoogle Scholar
  56. Oyama N, Akino H, Suzuki Y, Kanamaru H, Ishida H, Tanase K, Sadato N, Yonekura Y (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22:963–969PubMedCrossRefGoogle Scholar
  57. Oyama N, Akino H, Suzuki Y, Kanamaru H, Miwa Y, Tsuka H, Sadato N, Yonekura Y, Okada K (2002) Prognostic value of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4:99–104PubMedCrossRefGoogle Scholar
  58. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ J (2003) 11C- acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555PubMedGoogle Scholar
  59. Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU 103:615–619CrossRefGoogle Scholar
  60. Pelosi E, Arnea V, Skanjeti A, Pirro V, Douroukas A, Pupi A, Mancini M (2008) Role of whole-body (18)F-choline PET/CT in disease detrection in patients with biochemical relapse after radical treatment for prostate cancer. Radio Med 113:895–904CrossRefGoogle Scholar
  61. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12(7):413–439PubMedCrossRefGoogle Scholar
  62. Ramdave S, Thomas GW, Berlangieri SU, Bolton DM, Davis I, Tochon-Danguy H, Macgregor D, Scott AM (2001) Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Uro1 66:825–830Google Scholar
  63. Rentsch CA, Cecchini MG, Thalmann GN (2009) Loss of inhibition over master pathways of bone mass regulation results in osteosclerotic bone metastases in prostate cancer. Swiss Med Wkly 1339:220–225Google Scholar
  64. Rinnab L, Mottaghy FM, Blumstein NM et al (2007) Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 100:786–793PubMedCrossRefGoogle Scholar
  65. Rinnab L, Simon J, Hautmann RE et al (2009) [(11)C]choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostat ectomy. World J Urol 27:619–625PubMedCrossRefGoogle Scholar
  66. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Moller P (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254PubMedGoogle Scholar
  67. Reske SN, Blumstein NM, Glatting G (2008) [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35:9–17PubMedCrossRefGoogle Scholar
  68. Safaei A, Figlin R, Hoh CK, Silverman DH, Sletzer M, Phleps ME, Czernin J (2002) The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging renal cell cancer. Clin Nephrol 57:56–62PubMedGoogle Scholar
  69. Sanz G, Robles JE, Gimenez M, Arocena J, Sanchez D, Rodriguez-Rubio F, Rosell D, Richter JA, Berian JM (1999) BJU 84:1028–1031Google Scholar
  70. Scalcione LR, Katz DS, Santoro MS, Mahboob S, Badler RL, Yung EY (2009) Primary testicular lymphoma involving the spermatic cord and gonadal vein. Clin Nucl Med 34:222–223PubMedCrossRefGoogle Scholar
  71. Scattoni V, Picchio M, Suardi N, Messa C, Freschi M, Roscigno M, Da Pozzo L, Bocciardi A (2007) detection of lymph-node metastases with intergrated [11C]choline PET/CT in patiens with PSA failure after radical prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 52:423–429PubMedCrossRefGoogle Scholar
  72. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, Franceschelli A, Sanguedolce F, Bertaccini A, Farsad M, Giovacchini G, Fanti S, Grigioni WF, Fazio F, Montorsi F, Rigatti P, Martorana G (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with staging nomograms. Eur Urol 54:392–401PubMedCrossRefGoogle Scholar
  73. Schillaci O, Calabria F, Tavolozza M et al (2010) 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun 31:39–45PubMedCrossRefGoogle Scholar
  74. Schmid DT, Zweifel R, Cservenyak T, Westera G, Goerres GW, von Schulthess GK, Hany TF (2005) Fluorochole PET/CT in patients with prostate cancer. Radiology 235:623–628PubMedCrossRefGoogle Scholar
  75. Schoder H, Herrmann K, Gonen M, Hricak H, Eberhard S, Scardino P, Scher HI, Larson SM (2005) 2- [18F]fluorodeoxuglucose positron emission tomography for detection of disease in patients with prostatespecific antigen relapse after radical prostatectomy. Clin Cancer Res 11:4761–4769PubMedCrossRefGoogle Scholar
  76. Sciuto R, Simone G, Romano L et al (2011) Phase III Trial on F-18 Fluorocholine PET/CT efficiency in early detection of prostate cancer recurrence: preliminary results ove 1600 studies. Eur J Nucl Med Mol Imaging 38:S111Google Scholar
  77. SEER (2008) The Surveillance, Epidemiology, and End Results Program: cancer of the prostate statistics
  78. Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prosate cancer: intitial findings of PET with 2-deoxy-2-[F-18]fluro-d-glucose. Radiology 199:751–756PubMedGoogle Scholar
  79. Sohaib SA, Koh DM, Husband JE (2008) The role of imaging in the diagnosis, staging and management of testicular cancer. AJR 191:387–395PubMedCrossRefGoogle Scholar
  80. Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA, Habib FK (2008) Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. 20:1561–1567Google Scholar
  81. Sun SS, Chang CH, Ding HJ, Kao CH, Wu HC, Hsieh TC (2009) Preliminary study of detecting malignancy in Taiwanese ESRD patients. Anticancer Res 29:3459–3463PubMedGoogle Scholar
  82. Sung J, Espiritu JI, Segall GM, Terris MK (2003) Fluorodeoxyglucose positron emission tomography and staging of clinically advanced prostate cancer. BJU 92:24–27CrossRefGoogle Scholar
  83. Swinnen G, Maes A, Pottel H, Vanneste A, Billiet I, Lesage K, Werbrouck P (2009) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol [Epub ahead of print]Google Scholar
  84. Testa C, Schiavina R, Lodi R, Salizzoni E, Corti B, Farsad M, Kurhanewicz J, Manferrari F, Brunocilla E, Tonon C, Monetti N, Castellucci P, Fanti S, Coe M, Grigioni WF, Martorana G, Canini R, Barbiroli B (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy and 11C-choline PET/CT. Radiology 244:797–806Google Scholar
  85. Tuncel M, Souvatzoglou M, Herrmann K et al (2008) 11C choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35:689–695PubMedCrossRefGoogle Scholar
  86. Ulbright TM, Amin MB, Young RH (1997) Atlas of Tumor Pathology: tumors of the Testis, Adnexae, Spermatic Cord and Scrotum. Armed Forces Institute of Pahology, Wachington, DCGoogle Scholar
  87. Ward JF, Moul JW (2005) Rising prostate-specific antigen after primary prostate cancer. Nat Clin Pract Urol 2:174–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of RadiologyHoly Name Medical CenterTeaneckUSA
  2. 2.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations