MR-Guided Delivery and Tracking of Cellular Therapeutics

Part of the Medical Radiology book series (MEDRAD)


Cellular therapy describes the process of introducing new cells into a damaged or diseased system to treat a disease. Compared to systemic therapy, this highly targeted local delivery provides a therapeutic efficacy with few systemic effects. Cell tracking is an essential part of developing and understanding cellular therapy. Although there are other modalities that can be used both for cell delivery and for cell tracking, MR is preferable due to its inherent soft tissue and vascular contrast, exquisite anatomic detail, multiplanar capabilities, and lack of ionizing radiation. In this chapter, we will first review agents available for labeling and visualizing cells using MR. The underlying physics, types of agents, methods of cell labeling, and MR imaging techniques will be discussed. We will then briefly discuss some specialized examples of device-tracking for MR-guided cell delivery followed by a sampling of clinical trials.


Nephrogenic Systemic Fibrosis Cell Tracking Chemical Exchange Saturation Transfer Transfection Agent Exchangeable Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aime S, Delli Castelli D, Terreno E (2005) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44:5513–5515PubMedCrossRefGoogle Scholar
  2. Ali MM, Pagel MD (2008) Longer in vivo retention and accumulation improves detection of PARACEST MRI contrast agents. In: Proceeedings of the ISMRM 16th scientific meeting, Toronto, p 1645Google Scholar
  3. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Nat Acad Sci U S A 104:961–966CrossRefGoogle Scholar
  4. Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41:332–338PubMedCrossRefGoogle Scholar
  5. Arai T, Kofidis T, Bulte JW, de Bruin J, Venook RD, Berry GJ, McConnell MV, Quertermous T, Robbins RC, Yang PC (2006) Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 T. Magn Reson Med 55:203–209PubMedCrossRefGoogle Scholar
  6. Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA (2009) In vivo cellular imaging for translational medical research. Curr Med Imaging Rev 5:19–38PubMedCrossRefGoogle Scholar
  7. Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S, Varma NR, Knight RA, Soltanian-Zadeh H, Brown SL, Frank JA (2010) Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS ONE 5:e9365PubMedCrossRefGoogle Scholar
  8. Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E (2005) Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging 21:463–467PubMedCrossRefGoogle Scholar
  9. Arepally A, Karmarkar PV, Weiss C, Atalar E (2006) Percutaneous MR imaging-guided transvascular access of mesenteric venous system: study in swine model. Radiology 238:113–118PubMedCrossRefGoogle Scholar
  10. Arifin DR, Long CM, Gilad AA, Alric C, Roux S, Tillement O, Link TW, Arepally A, Bulte JW (2011) Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 260:790–798PubMedCrossRefGoogle Scholar
  11. Au KW, Liao SY, Lee YK, Lai WH, Ng KM, Chan YC, Yip MC, Ho CY, Wu EX, Li RA, Siu CW, Tse HF (2009) Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun 379:898–903PubMedCrossRefGoogle Scholar
  12. Baligand C, Vauchez K, Fiszman M, Vilquin JT, Carlier PG (2009) Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Ther 16:734–745PubMedCrossRefGoogle Scholar
  13. Barnett BP, Kraitchman DL, Lauzon C, Magee CA, Walczak P, Gilson WD, Arepally A, Bulte JW (2006) Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol Pharm 3:531–538PubMedCrossRefGoogle Scholar
  14. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JW (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991PubMedCrossRefGoogle Scholar
  15. Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JW (2011a) Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat Protoc 6:1142–1151PubMedCrossRefGoogle Scholar
  16. Barnett BP, Ruiz-Cabello J, Hota P, Liddell R, Walczak P, Howland V, Chacko VP, Kraitchman DL, Arepally A, Bulte JW (2011b) Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 258:182–191PubMedCrossRefGoogle Scholar
  17. Berman SMC, Walczak P, Bulte JWM (2011) Tracking stem cells using magnetic nanoparticles. WIREs Nanomed Nanobiotechnol 3:343–355CrossRefGoogle Scholar
  18. Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Wittenberg J, Ferrucci JT Jr (1988) Gd-DOTA: characterization of a new paramagnetic complex. Radiology 166:693–698PubMedGoogle Scholar
  19. Briley-Saebo KC, Shaw PX, Mulder WJ, Choi SH, Vucic E, Aguinaldo JG, Witztum JL, Fuster V, Tsimikas S, Fayad ZA (2008) Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117:3206–3215PubMedCrossRefGoogle Scholar
  20. Bulte JWM (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193:314–325CrossRefGoogle Scholar
  21. Bulte JW, Kraitchman DL (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5:567–584PubMedCrossRefGoogle Scholar
  22. Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Nat Acad Sci U S A 96:15256–15261CrossRefGoogle Scholar
  23. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRefGoogle Scholar
  24. Bulte JW, Kostura L, Mackay A, Karmarkar PV, Izbudak I, Atalar E, Fritzges D, Rodriguez ER, Young RG, Marcelino M, Pittenger MF, Kraitchman DL (2005) Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. Acad Radiol 12(Suppl 1):S2–S6PubMedCrossRefGoogle Scholar
  25. Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481PubMedCrossRefGoogle Scholar
  26. Callera F, de Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+  cells’ migration into the injured site. Stem Cells Dev 16:461–466PubMedCrossRefGoogle Scholar
  27. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53:999–1005PubMedCrossRefGoogle Scholar
  28. Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, Wickline SA, Lanza GM (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820–826PubMedCrossRefGoogle Scholar
  29. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRefGoogle Scholar
  30. Delli Castelli D, Dastru W, Terreno E, Cittadino E, Mainini F, Torres E, Spadaro M, Aime S (2010) In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. J Control Release 144:271–279PubMedCrossRefGoogle Scholar
  31. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108:2899–2904PubMedCrossRefGoogle Scholar
  32. Dodd CH, Hsu HC, Chu WJ, Yang P, Zhang HG, Mountz JD Jr, Zinn K, Forder J, Josephson L, Weissleder R, Mountz JM, Mountz JD (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256:89–105PubMedCrossRefGoogle Scholar
  33. Forsen S, Hoffman R (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901CrossRefGoogle Scholar
  34. Frank JA, Zywicke H, Jordan EK, Mitchell J, Lewis BK, Miller B, Bryant LH Jr, Bulte JW (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484–S487PubMedCrossRefGoogle Scholar
  35. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487PubMedCrossRefGoogle Scholar
  36. Giesel FL, Stroick M, Griebe M, Troster H, von der Lieth CW, Requardt M, Rius M, Essig M, Kauczor HU, Hennerici MG, Fatar M (2006) Gadofluorine m uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study. Invest Radiol 41:868–873PubMedCrossRefGoogle Scholar
  37. Gilad AA, McMahon MT, Walczak P, Winnard PT Jr, Raman V, van Laarhoven HW, Skoglund CM, Bulte JW, van Zijl PC (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219PubMedCrossRefGoogle Scholar
  38. Gilson WD, Kraitchman DL (2009) Noninvasive cardiovascular imaging techniques for basic science research: application to cellular therapeutics. Rev Esp Cardiol 62:918–927PubMedCrossRefGoogle Scholar
  39. Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, Karmarkar P, Lederman RJ, McVeigh ER (2007) Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging 26:1429–1435PubMedCrossRefGoogle Scholar
  40. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE (2010) CEST and PARACEST MR contrast agents. Acta Radiol 51:910–923PubMedCrossRefGoogle Scholar
  41. Haris M, Cai K, Singh A, Hariharan H, Reddy R (2011) In vivo mapping of brain myo-inositol. Neuroimage 54:2079–2085PubMedCrossRefGoogle Scholar
  42. Huang S, Endo RI, Nemerow GR (1995) Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 69:2257–2263PubMedGoogle Scholar
  43. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654PubMedCrossRefGoogle Scholar
  44. Jastrzebska B, Lebel R, Therriault H, McIntyre JO, Escher E, Guerin B, Paquette B, Neugebauer WA, Lepage M (2009) New enzyme-activated solubility-switchable contrast agent for magnetic resonance imaging: from synthesis to in vivo imaging. J Med Chem 52:1576–1581PubMedCrossRefGoogle Scholar
  45. Jones CK, Polders D, Hua J, Zhu H, Hoogduin HJ, Zhou J, Luijten P, van Zijl PC (2011) In vivo three-dimensional whole-brain pulsed steady-state chemical exchange saturation transfer at 7 T. Magn Reson Med. doi: 10.1002/mrm.23141
  46. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem 10:186–191CrossRefGoogle Scholar
  47. Jung MJ, Lee SS, Hwang YH, Jung HS, Hwang JW, Kim MJ, Yoon S, Lee DY (2011) MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles. Biomaterials 32(35):9391–9400PubMedCrossRefGoogle Scholar
  48. Kang YS, Gore JC (1984) Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences. Invest Radiol 19(5):399–407PubMedCrossRefGoogle Scholar
  49. Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW, Atalar E (2004) MR-trackable intramyocardial injection catheter. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med 51(6):1163–1172Google Scholar
  50. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JWM, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol-Chicago 67(10):1187–1194PubMedCrossRefGoogle Scholar
  51. Kedziorek DA, Kraitchman DL (2010) Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol Biol 660:171–183PubMedCrossRefGoogle Scholar
  52. Kim D, Chun BG, Kim YK, Lee YH, Park CS, Jeon I, Cheong C, Hwang TS, Chung H, Gwag BJ, Hong KS, Song J (2008) In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant 16:1007–1012PubMedCrossRefGoogle Scholar
  53. Kim M, Gillen J, Landman B, Zhou J, van Zijl PC (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450PubMedCrossRefGoogle Scholar
  54. Kraitchman DL, Bulte JW (2009) In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 29:1025–1030PubMedCrossRefGoogle Scholar
  55. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRefGoogle Scholar
  56. Kriz J, Jirak D, Girman P, Berkova Z, Zacharovova K, Honsova E, Lodererova A, Hajek M, Saudek F (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplant 80:1596–1603CrossRefGoogle Scholar
  57. Lepore AC, Walczak P, Rao MS, Fischer I, Bulte JW (2006) MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol 201:49–59PubMedCrossRefGoogle Scholar
  58. Link TW, Woodrum D, Gilson WD, Pan L, Qian D, Kraitchman DL, Bulte JW, Arepally A, Weiss CR (2011) MR-guided portal vein delivery and monitoring of magnetocapsules: assessment of physiologic effects on the liver. Vasc Interv Radiol 22:1335–1340CrossRefGoogle Scholar
  59. Liu G, Liang Y, Bar-Shir A, Chan KW, Galpoththawela CS, Bernard SM, Tse T, Yadav NN, Walczak P, McMahon MT, Bulte JW, van Zijl PC, Gilad AA (2011a) Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J Am Chem Soc 133:16326–16329PubMedCrossRefGoogle Scholar
  60. Liu G, Moake M, Har-el Y, Long CM, Chan KWY, Cardona A, Jamil M, Walczak P, Gilad AA, Sgouros G, van Zijl PCM, Bulte JWM, McMahon MT (2011b) In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn Reson Med. doi: 10.1002/mrm.23100
  61. Magerstadt M, Gansow OA, Brechbiel MW, Colcher D, Baltzer L, Knop RH, Girton ME, Naegele M (1986) Gd(DOTA): an alternative to Gd(DTPA) as a T1,2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Med 3:808–812PubMedCrossRefGoogle Scholar
  62. Majumdar S, Zoghbi S, Pope CF, Gore JC (1988) Quantitation of MR relaxation effects of iron oxide particles in liver and spleen. Radiology 169:653–658PubMedGoogle Scholar
  63. Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135PubMedCrossRefGoogle Scholar
  64. Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRefGoogle Scholar
  65. McMahon MT, Gilad AA, DeLiso MA, Berman SM, Bulte JW, van Zijl PC (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60(4):803–812PubMedCrossRefGoogle Scholar
  66. Miyoshi S, Flexman JA, Cross DJ, Maravilla KR, Kim Y, Anzai Y, Oshima J, Minoshima S (2005) Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 7:286–295PubMedCrossRefGoogle Scholar
  67. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387PubMedCrossRefGoogle Scholar
  68. Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654PubMedCrossRefGoogle Scholar
  69. Pavone P, Patrizio G, Buoni C, Tettamanti E, Passariello R, Musu C, Tirone P, Felder E (1990) Comparison of Gd-BOPTA with Gd-DTPA in MR imaging of rat liver. Radiology 176:61–64PubMedGoogle Scholar
  70. Ris F, Lepetit-Coiffe M, Meda P, Crowe LA, Toso C, Armanet M, Niclauss N, Parnaud G, Giovannoni L, Bosco D, Morel P, Vallee JP, Berney T (2010) Assessment of human islet labeling with clinical grade iron nanoparticles prior to transplantation for graft monitoring by MRI. Cell Transpl 19:1573–1585CrossRefGoogle Scholar
  71. Runge VM, Stewart RG, Clanton JA, Jones MM, Lukehart CM, Partain CL, James AE Jr (1983) Work in progress: potential oral and intravenous paramagnetic NMR contrast agents. Radiology 147:789–791PubMedGoogle Scholar
  72. Runge VM, Clanton JA, Price AC, Herzer WA, Wehr CJ, Lukehart CM, Partain CL, James AE Jr (1984) Paramagnetic contrast agents in magnetic resonance imaging: research at Vanderbilt University. Physiol Chem Phys Med NMR 16:113–122PubMedGoogle Scholar
  73. Saeed M, Martin AJ, Lee RJ, Weber O, Revel D, Saloner D, Higgins CB (2006) MR guidance of targeted injections into border and core of scarred myocardium in pigs. Radiology 240:419–26. Erratum in (2007). Radiology 242:320Google Scholar
  74. Shenberg I, Macovski A (1985) Inhomogeneity and multiple dimension considerations in magnetic resonance imaging with time-varying gradients. IEEE Trans Med Imaging 4:165–174PubMedCrossRefGoogle Scholar
  75. Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliver Rev 61:467–477CrossRefGoogle Scholar
  76. Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, Hariharan H, Reddy R (2011) Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. doi: 10.1002/mrm.23250
  77. Sinusas AJ, Bengel F, Nahrendorf M, Epstein FH, Wu JC, Villanueva FS, Fayad ZA, Gropler RJ (2008) Multimodality cardiovascular molecular imaging, Part I. Circ Cardiovasc Imaging 1:244–256PubMedCrossRefGoogle Scholar
  78. Song X, Gilad AA, Joel S, Liu G, Bar-Shir A, Liang Y, Gorelik M, Pekar JJ, van Zijl PCM, Bulte JWM, McMahon MT (2012) CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magn Reson Med. doi: 10.1002/mrm.23312
  79. Spuentrup E, Botnar RM, Wiethoff AJ, Ibrahim T, Kelle S, Katoh M, Ozgun M, Nagel E, Vymazal J, Graham PB, Gunther RW, Maintz D (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005PubMedCrossRefGoogle Scholar
  80. Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58:1072–1077PubMedCrossRefGoogle Scholar
  81. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621PubMedCrossRefGoogle Scholar
  82. Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transpl 8:701–706CrossRefGoogle Scholar
  83. Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 9:409–415PubMedCrossRefGoogle Scholar
  84. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677PubMedCrossRefGoogle Scholar
  85. Vinogradov E, Soesbe TC, Balschi JA, Dean Sherry A, Lenkinski RE (2011) pCEST: positive contrast using chemical exchange saturation transfer. J Magn Reson. doi: 10.1016/j.jmr.2011.12.011
  86. Vogler H, Platzek J, Schuhmann-Giampieri G, Frenzel T, Weinmann HJ, Raduchel B, Press WR (1995) Pre-clinical evaluation of gadobutrol: a new, neutral, extracellular contrast agent for magnetic resonance imaging. Eur J Radiol 21:1–10PubMedCrossRefGoogle Scholar
  87. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774PubMedCrossRefGoogle Scholar
  88. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87PubMedCrossRefGoogle Scholar
  89. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624Google Scholar
  90. Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries H (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med 22:233–237 (discussion 242)PubMedCrossRefGoogle Scholar
  91. Yang K, Xiang P, Zhang C, Zou L, Wu X, Gao Y, Kang Z, He K, Liu J, Peng C (2011) Magnetic resonance evaluation of transplanted mesenchymal stem cells after myocardial infarction in swine. Can J Cardiol 27:818–825PubMedCrossRefGoogle Scholar
  92. Young IR, Clarke GJ, Bailes DR, Pennock JM, Doyle FH, Bydder GM (1981) Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr 5:543–547PubMedCrossRefGoogle Scholar
  93. Yu L, Scherlag BJ, Dormer K, Nguyen KT, Pope C, Fung KM, Po SS (2010) Autonomic denervation with magnetic nanoparticles. Circulation 122:2653–2659PubMedCrossRefGoogle Scholar
  94. Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. New Engl J Med 355:2376–2378PubMedCrossRefGoogle Scholar
  95. Zimmet H, Porapakkham P, Sata Y, Haas SJ, Itescu S, Forbes A, Krum H (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14:91–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations