Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2715 Accesses

Abstract

Malignant lymphoma is the most common hematologic malignancy and one of the most common malignant diseases in the general population. These lymphoproliferative disorders can be broadly divided into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Patients with NHL have an especially poor prognosis with an average 5-year survival rate of 64%. NHL accounts for 2.6% of all cancer deaths. However, the 5-year survival has been gradually improving because of refinements in clinical management. Imaging has traditionally played a key role in the initial staging and surveillance of lymphoma. The first reports of PET for lymphoma imaging were published more than 20 years ago. Today 18F-FDG PET is the cornerstone of disease-staging in state-of-the-art management of HL and high grade NHL. In the past decades several studies investigated the value of PET/CT for the diagnosis and staging of lymphomas, and the great majority showed very high sensitivity and specificity in patients with HL and aggressive NHL. Greater variations have been reported in the sensitivity and specificity in patients with indolent lymphomas. PET is less commonly used for staging of these indolent lymphomas. Over the last few years, the efficacy of PET has been evaluated at all steps of lymphoma management including interim treatment monitoring, post-treatment response evaluation, and follow-up. Another important hematologic cancer is leukemia; however, even today, the role of functional (and morphologic) imaging in patients with leukemia is very limited. The role of PET/CT in multiple myeloma is evolving. PET/CT is superior to standard radiographic staging for multiple myeloma. It appears to be a prognostic marker for predicting outcome at baseline, after induction therapy and after transplantation for patients with multiple myeloma. Further studies may be necessary to validate these initial findings for incorporation of PET/CT in the guidelines for management of multiple myeloma.

R. M. Subramaniam, L. Prompers, and F. M. Mottaghy are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bangerter M, Moog F, Buchmann I et al (1998) Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9(10):1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076

    Article  PubMed  CAS  Google Scholar 

  • Blake MA, Singh A, Setty BN et al (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26(5):1335–1353

    Article  PubMed  Google Scholar 

  • Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):360–385

    Article  PubMed  Google Scholar 

  • Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R (2005) Value of FDG PET in the assessment of patients with multiple myeloma. Am J Roentgenol 184(4):1199–1204

    Google Scholar 

  • Brepoels L, Stroobants S, De Wever W et al (2007a) Aggressive and indolent non-Hodgkin’s lymphoma: response assessment by integrated international workshop criteria. Leuk Lymphoma 48(8):1522–1530

    Article  PubMed  Google Scholar 

  • Brepoels L, Stroobants S, De Wever W et al (2007b) Hodgkin lymphoma: response assessment by revised international workshop criteria. Leuk Lymphoma 48(8):1539–1547

    Article  PubMed  Google Scholar 

  • Breyer RJ 3rd, Mulligan ME, Smith SE, Line BR, Badros AZ (2006) Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 35(9):632–640

    Article  PubMed  Google Scholar 

  • Buchmann I, Reinhardt M, Elsner K et al (2001) 2- (fluorine-18)fluoro-2-deoxy-d-glucose positron emission tomography in the detection and staging of malignant lymphoma a bicenter trial. Cancer 91(5):889–899

    Article  PubMed  CAS  Google Scholar 

  • Buck AK, Bommer M, Stilgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22):11055–11061

    Article  PubMed  CAS  Google Scholar 

  • Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14(10):2970–2977

    Article  PubMed  CAS  Google Scholar 

  • Cabanillas F, Fuller LM (1990) The radiologic assessment of the lymphoma patient from the standpoint of the clinician. Radiol Clin North Am 28(4):683–695

    PubMed  CAS  Google Scholar 

  • Castellucci P, Nanni C, Farsad M et al (2005) Potential pitfalls of 18F-FDG PET in a large series of patients treated for malignant lymphoma: prevalence and scan interpretation. Nucl Med Commun 26(8):689–694

    Article  PubMed  Google Scholar 

  • Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored international working group. J Clin Oncol 17(4):1244

    PubMed  CAS  Google Scholar 

  • Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586

    Article  PubMed  Google Scholar 

  • De Saint-Hubert M, Wang H, Devos E et al (2008) Preclinical Imaging of Therapy Response Using Metabolic and Apoptosis Molecular Imaging. Mol Imaging Biol 18(7):1422–1430

    Google Scholar 

  • Delbeke D, Stroobants S, de Kerviler E, Gisselbrecht C, Meignan M, Conti PS (2009) Expert opinions on positron emission tomography and computed tomography imaging in lymphoma. Oncologist 14(Suppl 2):30–40

    Article  PubMed  Google Scholar 

  • Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34(9):576–584

    Article  PubMed  Google Scholar 

  • Dimopoulos M, Terpos E, Comenzo RL et al (2009) International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 23(9):1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Dinter DJ, Neff WK, Klaus J et al (2009) Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy. Ann Hematol 88(5):457–464

    Article  PubMed  Google Scholar 

  • Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36(3):842–854

    Article  PubMed  CAS  Google Scholar 

  • Elstrom R, Guan L, Baker G et al (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 101(10):3875–3876

    Article  PubMed  CAS  Google Scholar 

  • Estey E, Dohner H (2006) Acute myeloid leukaemia. Lancet 368(9550):1894–1907

    Article  PubMed  Google Scholar 

  • Fonti R, Salvatore B, Quarantelli M et al (2008) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49(2):195–200

    Article  PubMed  Google Scholar 

  • Fruehwald FX, Tscholakoff D, Schwaighofer B et al (1988) Magnetic resonance imaging of the lower vertebral column in patients with multiple myeloma. Invest Radiol 23(3):193–199

    Article  PubMed  CAS  Google Scholar 

  • Fueger BJ, Yeom K, Czernin J, Sayre JW, Phelps ME, Allen-Auerbach MS (2009) Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin’s lymphoma. Mol Imaging Biol 11(4):269–274

    Article  PubMed  Google Scholar 

  • Graf K, Dietrich T, Tachezy M et al (2008) Monitoring therapeutical intervention with ezetimibe using targeted near-infrared fluorescence imaging in experimental atherosclerosis. Mol Imaging 7(2):68–76

    PubMed  CAS  Google Scholar 

  • Hanrahan CJ, Christensen CR, Crim JR (2010) Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 30(1):127–142

    Article  PubMed  Google Scholar 

  • Harris NL, Jaffe ES, Diebold J et al (2000) The World Health Organization classification of neoplastic diseases of the haematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia. Histopathology 36(1):69–86

    Article  PubMed  CAS  Google Scholar 

  • Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339(21):1506–1514

    Article  PubMed  CAS  Google Scholar 

  • Huang SC (2000) Anatomy of SUV standardized uptake value. Nucl Med Biol 27(7):643–646

    Article  PubMed  CAS  Google Scholar 

  • Hunt BM, Vallieres E, Buduhan G, Aye R, Louie B (2009) Sarcoidosis as a benign cause of lymphadenopathy in cancer patients. Am J Surg 197(5):629–632 (discussion 32)

    Google Scholar 

  • Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50(Suppl 1):21S–30S

    Article  PubMed  CAS  Google Scholar 

  • Hutchings M, Loft A, Hansen M et al (2006) Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica 91(4):482–489

    PubMed  Google Scholar 

  • Jacene HA, Filice R, Kasecamp W, Wahl RL (2009) 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med 50(1):8–17

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  • Jerusalem G, Beguin Y, Fassotte MF et al (1999) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94(2):429–433

    PubMed  CAS  Google Scholar 

  • Jerusalem G, Beguin Y, Fassotte MF et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica 86(3):266–273

    PubMed  CAS  Google Scholar 

  • Juweid ME (2006) Utility of positron emission tomography (PET) scanning in managing patients with Hodgkin lymphoma. Hematology/the Education Program of the American Society of Hematology American Society of Hematology 259(65):510–511

    Google Scholar 

  • Juweid ME (2008) 18F-FDG PET as a routine test for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma: where is the evidence? J Nucl Med 49(1):9–12

    Article  PubMed  Google Scholar 

  • Juweid ME, Cheson BD (2005) Role of positron emission tomography in lymphoma. J Clin Oncol 23(21):4577–4580

    Article  PubMed  Google Scholar 

  • Juweid ME, Wiseman GA, Vose JM et al (2005) Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol 23(21):4652–4661

    Article  PubMed  Google Scholar 

  • Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25(5):571–578

    Article  PubMed  Google Scholar 

  • Karam M, Novak L, Cyriac J, Ali A, Nazeer T, Nugent F (2006) Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer 107(1):175–183

    Article  PubMed  Google Scholar 

  • Karam M, Roberts-Klein S, Shet N, Chang J, Feustel P (2008) Bilateral hilar foci on 18F-FDG PET scan in patients without lung cancer: variables associated with benign and malignant etiology. J Nucl Med 49(9):1429–1436

    Article  PubMed  Google Scholar 

  • Karam M, Ata A, Irish K et al (2009) FDG positron emission tomography/computed tomography scan may identify mantle cell lymphoma patients with unusually favorable outcome. Nucl Med Commun 30(10):770–778

    Article  PubMed  Google Scholar 

  • Kikushige Y, Takase K, Sata K et al (2007) Repeated relapses of acute myelogenous leukemia in the isolated extramedullary sites following allogeneic bone marrow transplantations. Intern med (Tokyo, Japan) 46(13):1011–1014

    Google Scholar 

  • Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ (2002) Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 94(4):879–888

    Article  PubMed  Google Scholar 

  • Kuenzle K, Taverna C, Steinert HC (2002) Detection of extramedullary infiltrates in acute myelogenous leukemia with whole-body positron emission tomography and 2-deoxy-2-[18F]-fluoro-d-glucose. Mol Imaging Biol 4(2):179–183

    Article  PubMed  Google Scholar 

  • Kwee TC, Kwee RM, Nievelstein RA (2008) Imaging in staging of malignant lymphoma: a systematic review. Blood 111(2):504–516

    Article  PubMed  CAS  Google Scholar 

  • Laubach JP, Mitsiades CS, Mahindra A et al (2009) Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw 7(9):947–960

    PubMed  CAS  Google Scholar 

  • Le Dortz L, De Guibert S, Bayat S et al (2010) Diagnostic and prognostic impact of (18)F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 37:2307–2314

    Article  PubMed  Google Scholar 

  • Lecouvet FE, Malghem J, Michaux L et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 106(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Love C, Tomas M, Tronco G, Palestro C (2005) FDG PET of Infection and Inflammation. RadioGraphics 25:1357–1368

    Article  PubMed  Google Scholar 

  • Ludwig H, Fruhwald F, Tscholakoff D, Rasoul S, Neuhold A, Fritz E (1987) Magnetic resonance imaging of the spine in multiple myeloma. Lancet 2(8555):364–366

    Article  PubMed  CAS  Google Scholar 

  • Lutje S, de Rooy JW, Croockewit S, Koedam E, Oyen WJ, Raymakers RA (2009) Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol 88(12):1161–1168

    Article  PubMed  Google Scholar 

  • MacDermed D, Thurber L, George TI, Hoppe RT, Le QT (2004) Extranodal nonorbital indolent lymphomas of the head and neck: relationship between tumor control and radiotherapy. Int J Radiat Oncol Biol Phys 59(3):788–795

    Article  PubMed  Google Scholar 

  • Menda Y, Graham MM (2005) Update on 18F-Fluorodeoxyglucose/positron emission tomography and positron emission tomography/computed tomography imaging of squamous head and neck cancers. Semin Nucl Med 35(4):214–219

    Article  PubMed  Google Scholar 

  • Moog F, Bangerter M, Diederichs CG et al (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206(2):475–481

    PubMed  CAS  Google Scholar 

  • Nanni C, Zamagni E, Farsad M et al (2006) Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 33(5):525–531

    Article  PubMed  Google Scholar 

  • Naumann R, Beuthien-Baumann B, Reiss A et al (2004) Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer 90(3):620–625

    Article  PubMed  CAS  Google Scholar 

  • Neumaier B, Mottaghy F, Buck A et al (2008) 18)F-immuno-PET: Determination of anti-CD66 biodistribution in a patient with high-risk leukemia. Cancer Biother Radiopharm (23):819–824

    Google Scholar 

  • Pakos EE, Fotopoulos AD, Ioannidis JP (2005) 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med 46(6):958–963

    PubMed  Google Scholar 

  • Prabhakar HB, Sahani DV, Fischman AJ, Mueller PR, Blake MA (2007) Bowel Hot Spots at PET-CT. Radiographics 27(1):145–159

    Article  PubMed  Google Scholar 

  • Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339

    Article  PubMed  Google Scholar 

  • Schoder H, Meta J, Yap C et al (2001) Effect of whole-body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med 42(8):1139–1143

    PubMed  CAS  Google Scholar 

  • Seam P, Juweid ME, Cheson BD (2007) The role of FDG-PET scans in patients with lymphoma. Blood 110(10):3507–3516

    Article  PubMed  CAS  Google Scholar 

  • Sonet A, Graux C, Nollevaux MC, Krug B, Bosly A (2007) Vander Borght T. Unsuspected FDG-PET findings in the follow-up of patients with lymphoma. Ann Hematol 86(1):9–15

    Article  PubMed  Google Scholar 

  • Spaepen K, Mortelmans L (2001) Evaluation of treatment response in patients with lymphoma using [18F]FDG-PET: differences between non-Hodgkin’s lymphoma and Hodgkin’s disease. Q J Nucl Med 45(3):269–273

    PubMed  CAS  Google Scholar 

  • Spaepen K, Stroobants S, Dupont P et al (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102(1):53–59

    Article  PubMed  CAS  Google Scholar 

  • Terasawa T, Nihashi T, Hotta T, Nagai H (2008) 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive Non-Hodgkin’s lymphoma: a systematic review. J Nucl Med 49(1):13–21

    Article  PubMed  Google Scholar 

  • Tsang RW, Gospodarowicz MK, Pintilie M et al (2001) Solitary plasmacytoma treated with radiotherapy: impact of tumor size on outcome. Int J Radiat Oncol Biol Phys 50(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto N, Kojima M, Hasegawa M et al (2007) The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67) gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer 110(3):652–659

    Article  PubMed  Google Scholar 

  • van Lammeren-Venema D, Regelink JC, Riphagen, II, Zweegman S, Hoekstra OS, Zijlstra JM (2011) (18) F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: A systematic review. Cancer. doi:10.1002/cncr.26467 [1 Sep 2011]

  • von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238(2):405–422

    Article  Google Scholar 

  • Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51 (1):25–30

    Google Scholar 

  • Wirth A, Seymour JF, Hicks RJ et al (2002) Fluorine-18 fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin’s disease and non-Hodgkin’s lymphoma. Am J Med 112(4):262–268

    Article  PubMed  Google Scholar 

  • Wirth A, Foo M, Seymour JF, Macmanus MP, Hicks RJ (2008) Impact of [18f] fluorodeoxyglucose positron emission tomography on staging and management of early-stage follicular non-hodgkin lymphoma. Int J Radiat Oncol Biol Phys 71(1):213–219

    Article  PubMed  Google Scholar 

  • Yang DH, Min JJ, Jeong YY et al (2009) The combined evaluation of interim contrast-enhanced computerized tomography (CT) and FDG-PET/CT predicts the clinical outcomes and may impact on the therapeutic plans in patients with aggressive non-Hodgkin’s lymphoma. Ann Hematol 88(5):425–432

    Article  PubMed  Google Scholar 

  • Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92(1):50–55

    Article  PubMed  Google Scholar 

  • Zamagni E, Petrucci A, Tosi P et al (2012) Long-term results of thalidomide and dexamethasone (thal-dex) as therapy of first relapse in multiple myeloma. Ann Hematol 91(3):419–426

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra JM (2006) Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen, II, Huijgens PC. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 91(4):522–529

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix M. Mottaghy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subramaniam, R.M., Prompers, L., Agarwal, A., Guermazi, A., Mottaghy, F.M. (2012). Hematology. In: Peller, P., Subramaniam, R., Guermazi, A. (eds) PET-CT and PET-MRI in Oncology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_594

Download citation

  • DOI: https://doi.org/10.1007/174_2012_594

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01138-2

  • Online ISBN: 978-3-642-01139-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics