• Rathan M. Subramaniam
  • Leonne Prompers
  • A. Agarwal
  • Ali Guermazi
  • Felix M. Mottaghy
Part of the Medical Radiology book series (MEDRAD)


Malignant lymphoma is the most common hematologic malignancy and one of the most common malignant diseases in the general population. These lymphoproliferative disorders can be broadly divided into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Patients with NHL have an especially poor prognosis with an average 5-year survival rate of 64%. NHL accounts for 2.6% of all cancer deaths. However, the 5-year survival has been gradually improving because of refinements in clinical management. Imaging has traditionally played a key role in the initial staging and surveillance of lymphoma. The first reports of PET for lymphoma imaging were published more than 20 years ago. Today 18F-FDG PET is the cornerstone of disease-staging in state-of-the-art management of HL and high grade NHL. In the past decades several studies investigated the value of PET/CT for the diagnosis and staging of lymphomas, and the great majority showed very high sensitivity and specificity in patients with HL and aggressive NHL. Greater variations have been reported in the sensitivity and specificity in patients with indolent lymphomas. PET is less commonly used for staging of these indolent lymphomas. Over the last few years, the efficacy of PET has been evaluated at all steps of lymphoma management including interim treatment monitoring, post-treatment response evaluation, and follow-up. Another important hematologic cancer is leukemia; however, even today, the role of functional (and morphologic) imaging in patients with leukemia is very limited. The role of PET/CT in multiple myeloma is evolving. PET/CT is superior to standard radiographic staging for multiple myeloma. It appears to be a prognostic marker for predicting outcome at baseline, after induction therapy and after transplantation for patients with multiple myeloma. Further studies may be necessary to validate these initial findings for incorporation of PET/CT in the guidelines for management of multiple myeloma.


Multiple Myeloma Positive Predictive Value Follicular Lymphoma Mantle Cell Lymphoma Malt Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bangerter M, Moog F, Buchmann I et al (1998) Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9(10):1117–1122PubMedCrossRefGoogle Scholar
  2. Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076PubMedCrossRefGoogle Scholar
  3. Blake MA, Singh A, Setty BN et al (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26(5):1335–1353PubMedCrossRefGoogle Scholar
  4. Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):360–385PubMedCrossRefGoogle Scholar
  5. Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R (2005) Value of FDG PET in the assessment of patients with multiple myeloma. Am J Roentgenol 184(4):1199–1204Google Scholar
  6. Brepoels L, Stroobants S, De Wever W et al (2007a) Aggressive and indolent non-Hodgkin’s lymphoma: response assessment by integrated international workshop criteria. Leuk Lymphoma 48(8):1522–1530PubMedCrossRefGoogle Scholar
  7. Brepoels L, Stroobants S, De Wever W et al (2007b) Hodgkin lymphoma: response assessment by revised international workshop criteria. Leuk Lymphoma 48(8):1539–1547PubMedCrossRefGoogle Scholar
  8. Breyer RJ 3rd, Mulligan ME, Smith SE, Line BR, Badros AZ (2006) Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 35(9):632–640PubMedCrossRefGoogle Scholar
  9. Buchmann I, Reinhardt M, Elsner K et al (2001) 2- (fluorine-18)fluoro-2-deoxy-d-glucose positron emission tomography in the detection and staging of malignant lymphoma a bicenter trial. Cancer 91(5):889–899PubMedCrossRefGoogle Scholar
  10. Buck AK, Bommer M, Stilgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22):11055–11061PubMedCrossRefGoogle Scholar
  11. Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14(10):2970–2977PubMedCrossRefGoogle Scholar
  12. Cabanillas F, Fuller LM (1990) The radiologic assessment of the lymphoma patient from the standpoint of the clinician. Radiol Clin North Am 28(4):683–695PubMedGoogle Scholar
  13. Castellucci P, Nanni C, Farsad M et al (2005) Potential pitfalls of 18F-FDG PET in a large series of patients treated for malignant lymphoma: prevalence and scan interpretation. Nucl Med Commun 26(8):689–694PubMedCrossRefGoogle Scholar
  14. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored international working group. J Clin Oncol 17(4):1244PubMedGoogle Scholar
  15. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586PubMedCrossRefGoogle Scholar
  16. De Saint-Hubert M, Wang H, Devos E et al (2008) Preclinical Imaging of Therapy Response Using Metabolic and Apoptosis Molecular Imaging. Mol Imaging Biol 18(7):1422–1430Google Scholar
  17. Delbeke D, Stroobants S, de Kerviler E, Gisselbrecht C, Meignan M, Conti PS (2009) Expert opinions on positron emission tomography and computed tomography imaging in lymphoma. Oncologist 14(Suppl 2):30–40PubMedCrossRefGoogle Scholar
  18. Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34(9):576–584PubMedCrossRefGoogle Scholar
  19. Dimopoulos M, Terpos E, Comenzo RL et al (2009) International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 23(9):1545–1556PubMedCrossRefGoogle Scholar
  20. Dinter DJ, Neff WK, Klaus J et al (2009) Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy. Ann Hematol 88(5):457–464PubMedCrossRefGoogle Scholar
  21. Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36(3):842–854PubMedCrossRefGoogle Scholar
  22. Elstrom R, Guan L, Baker G et al (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 101(10):3875–3876PubMedCrossRefGoogle Scholar
  23. Estey E, Dohner H (2006) Acute myeloid leukaemia. Lancet 368(9550):1894–1907PubMedCrossRefGoogle Scholar
  24. Fonti R, Salvatore B, Quarantelli M et al (2008) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49(2):195–200PubMedCrossRefGoogle Scholar
  25. Fruehwald FX, Tscholakoff D, Schwaighofer B et al (1988) Magnetic resonance imaging of the lower vertebral column in patients with multiple myeloma. Invest Radiol 23(3):193–199PubMedCrossRefGoogle Scholar
  26. Fueger BJ, Yeom K, Czernin J, Sayre JW, Phelps ME, Allen-Auerbach MS (2009) Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin’s lymphoma. Mol Imaging Biol 11(4):269–274PubMedCrossRefGoogle Scholar
  27. Graf K, Dietrich T, Tachezy M et al (2008) Monitoring therapeutical intervention with ezetimibe using targeted near-infrared fluorescence imaging in experimental atherosclerosis. Mol Imaging 7(2):68–76PubMedGoogle Scholar
  28. Hanrahan CJ, Christensen CR, Crim JR (2010) Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 30(1):127–142PubMedCrossRefGoogle Scholar
  29. Harris NL, Jaffe ES, Diebold J et al (2000) The World Health Organization classification of neoplastic diseases of the haematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia. Histopathology 36(1):69–86PubMedCrossRefGoogle Scholar
  30. Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339(21):1506–1514PubMedCrossRefGoogle Scholar
  31. Huang SC (2000) Anatomy of SUV standardized uptake value. Nucl Med Biol 27(7):643–646PubMedCrossRefGoogle Scholar
  32. Hunt BM, Vallieres E, Buduhan G, Aye R, Louie B (2009) Sarcoidosis as a benign cause of lymphadenopathy in cancer patients. Am J Surg 197(5):629–632 (discussion 32)Google Scholar
  33. Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50(Suppl 1):21S–30SPubMedCrossRefGoogle Scholar
  34. Hutchings M, Loft A, Hansen M et al (2006) Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica 91(4):482–489PubMedGoogle Scholar
  35. Jacene HA, Filice R, Kasecamp W, Wahl RL (2009) 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med 50(1):8–17PubMedCrossRefGoogle Scholar
  36. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRefGoogle Scholar
  37. Jerusalem G, Beguin Y, Fassotte MF et al (1999) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94(2):429–433PubMedGoogle Scholar
  38. Jerusalem G, Beguin Y, Fassotte MF et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica 86(3):266–273PubMedGoogle Scholar
  39. Juweid ME (2006) Utility of positron emission tomography (PET) scanning in managing patients with Hodgkin lymphoma. Hematology/the Education Program of the American Society of Hematology American Society of Hematology 259(65):510–511Google Scholar
  40. Juweid ME (2008) 18F-FDG PET as a routine test for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma: where is the evidence? J Nucl Med 49(1):9–12PubMedCrossRefGoogle Scholar
  41. Juweid ME, Cheson BD (2005) Role of positron emission tomography in lymphoma. J Clin Oncol 23(21):4577–4580PubMedCrossRefGoogle Scholar
  42. Juweid ME, Wiseman GA, Vose JM et al (2005) Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol 23(21):4652–4661PubMedCrossRefGoogle Scholar
  43. Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25(5):571–578PubMedCrossRefGoogle Scholar
  44. Karam M, Novak L, Cyriac J, Ali A, Nazeer T, Nugent F (2006) Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer 107(1):175–183PubMedCrossRefGoogle Scholar
  45. Karam M, Roberts-Klein S, Shet N, Chang J, Feustel P (2008) Bilateral hilar foci on 18F-FDG PET scan in patients without lung cancer: variables associated with benign and malignant etiology. J Nucl Med 49(9):1429–1436PubMedCrossRefGoogle Scholar
  46. Karam M, Ata A, Irish K et al (2009) FDG positron emission tomography/computed tomography scan may identify mantle cell lymphoma patients with unusually favorable outcome. Nucl Med Commun 30(10):770–778PubMedCrossRefGoogle Scholar
  47. Kikushige Y, Takase K, Sata K et al (2007) Repeated relapses of acute myelogenous leukemia in the isolated extramedullary sites following allogeneic bone marrow transplantations. Intern med (Tokyo, Japan) 46(13):1011–1014Google Scholar
  48. Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ (2002) Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 94(4):879–888PubMedCrossRefGoogle Scholar
  49. Kuenzle K, Taverna C, Steinert HC (2002) Detection of extramedullary infiltrates in acute myelogenous leukemia with whole-body positron emission tomography and 2-deoxy-2-[18F]-fluoro-d-glucose. Mol Imaging Biol 4(2):179–183PubMedCrossRefGoogle Scholar
  50. Kwee TC, Kwee RM, Nievelstein RA (2008) Imaging in staging of malignant lymphoma: a systematic review. Blood 111(2):504–516PubMedCrossRefGoogle Scholar
  51. Laubach JP, Mitsiades CS, Mahindra A et al (2009) Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw 7(9):947–960PubMedGoogle Scholar
  52. Le Dortz L, De Guibert S, Bayat S et al (2010) Diagnostic and prognostic impact of (18)F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 37:2307–2314PubMedCrossRefGoogle Scholar
  53. Lecouvet FE, Malghem J, Michaux L et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 106(1):35–39PubMedCrossRefGoogle Scholar
  54. Love C, Tomas M, Tronco G, Palestro C (2005) FDG PET of Infection and Inflammation. RadioGraphics 25:1357–1368PubMedCrossRefGoogle Scholar
  55. Ludwig H, Fruhwald F, Tscholakoff D, Rasoul S, Neuhold A, Fritz E (1987) Magnetic resonance imaging of the spine in multiple myeloma. Lancet 2(8555):364–366PubMedCrossRefGoogle Scholar
  56. Lutje S, de Rooy JW, Croockewit S, Koedam E, Oyen WJ, Raymakers RA (2009) Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol 88(12):1161–1168PubMedCrossRefGoogle Scholar
  57. MacDermed D, Thurber L, George TI, Hoppe RT, Le QT (2004) Extranodal nonorbital indolent lymphomas of the head and neck: relationship between tumor control and radiotherapy. Int J Radiat Oncol Biol Phys 59(3):788–795PubMedCrossRefGoogle Scholar
  58. Menda Y, Graham MM (2005) Update on 18F-Fluorodeoxyglucose/positron emission tomography and positron emission tomography/computed tomography imaging of squamous head and neck cancers. Semin Nucl Med 35(4):214–219PubMedCrossRefGoogle Scholar
  59. Moog F, Bangerter M, Diederichs CG et al (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206(2):475–481PubMedGoogle Scholar
  60. Nanni C, Zamagni E, Farsad M et al (2006) Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 33(5):525–531PubMedCrossRefGoogle Scholar
  61. Naumann R, Beuthien-Baumann B, Reiss A et al (2004) Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer 90(3):620–625PubMedCrossRefGoogle Scholar
  62. Neumaier B, Mottaghy F, Buck A et al (2008) 18)F-immuno-PET: Determination of anti-CD66 biodistribution in a patient with high-risk leukemia. Cancer Biother Radiopharm (23):819–824Google Scholar
  63. Pakos EE, Fotopoulos AD, Ioannidis JP (2005) 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med 46(6):958–963PubMedGoogle Scholar
  64. Prabhakar HB, Sahani DV, Fischman AJ, Mueller PR, Blake MA (2007) Bowel Hot Spots at PET-CT. Radiographics 27(1):145–159PubMedCrossRefGoogle Scholar
  65. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339PubMedCrossRefGoogle Scholar
  66. Schoder H, Meta J, Yap C et al (2001) Effect of whole-body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med 42(8):1139–1143PubMedGoogle Scholar
  67. Seam P, Juweid ME, Cheson BD (2007) The role of FDG-PET scans in patients with lymphoma. Blood 110(10):3507–3516PubMedCrossRefGoogle Scholar
  68. Sonet A, Graux C, Nollevaux MC, Krug B, Bosly A (2007) Vander Borght T. Unsuspected FDG-PET findings in the follow-up of patients with lymphoma. Ann Hematol 86(1):9–15PubMedCrossRefGoogle Scholar
  69. Spaepen K, Mortelmans L (2001) Evaluation of treatment response in patients with lymphoma using [18F]FDG-PET: differences between non-Hodgkin’s lymphoma and Hodgkin’s disease. Q J Nucl Med 45(3):269–273PubMedGoogle Scholar
  70. Spaepen K, Stroobants S, Dupont P et al (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102(1):53–59PubMedCrossRefGoogle Scholar
  71. Terasawa T, Nihashi T, Hotta T, Nagai H (2008) 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive Non-Hodgkin’s lymphoma: a systematic review. J Nucl Med 49(1):13–21PubMedCrossRefGoogle Scholar
  72. Tsang RW, Gospodarowicz MK, Pintilie M et al (2001) Solitary plasmacytoma treated with radiotherapy: impact of tumor size on outcome. Int J Radiat Oncol Biol Phys 50(1):113–120PubMedCrossRefGoogle Scholar
  73. Tsukamoto N, Kojima M, Hasegawa M et al (2007) The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67) gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer 110(3):652–659PubMedCrossRefGoogle Scholar
  74. van Lammeren-Venema D, Regelink JC, Riphagen, II, Zweegman S, Hoekstra OS, Zijlstra JM (2011) (18) F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: A systematic review. Cancer. doi: 10.1002/cncr.26467 [1 Sep 2011]
  75. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238(2):405–422CrossRefGoogle Scholar
  76. Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51 (1):25–30Google Scholar
  77. Wirth A, Seymour JF, Hicks RJ et al (2002) Fluorine-18 fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin’s disease and non-Hodgkin’s lymphoma. Am J Med 112(4):262–268PubMedCrossRefGoogle Scholar
  78. Wirth A, Foo M, Seymour JF, Macmanus MP, Hicks RJ (2008) Impact of [18f] fluorodeoxyglucose positron emission tomography on staging and management of early-stage follicular non-hodgkin lymphoma. Int J Radiat Oncol Biol Phys 71(1):213–219PubMedCrossRefGoogle Scholar
  79. Yang DH, Min JJ, Jeong YY et al (2009) The combined evaluation of interim contrast-enhanced computerized tomography (CT) and FDG-PET/CT predicts the clinical outcomes and may impact on the therapeutic plans in patients with aggressive non-Hodgkin’s lymphoma. Ann Hematol 88(5):425–432PubMedCrossRefGoogle Scholar
  80. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92(1):50–55PubMedCrossRefGoogle Scholar
  81. Zamagni E, Petrucci A, Tosi P et al (2012) Long-term results of thalidomide and dexamethasone (thal-dex) as therapy of first relapse in multiple myeloma. Ann Hematol 91(3):419–426PubMedCrossRefGoogle Scholar
  82. Zijlstra JM (2006) Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen, II, Huijgens PC. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 91(4):522–529PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Rathan M. Subramaniam
    • 5
  • Leonne Prompers
    • 2
  • A. Agarwal
    • 1
  • Ali Guermazi
    • 3
  • Felix M. Mottaghy
    • 2
    • 4
  1. 1.Boston University School of MedicineBostonUSA
  2. 2.Department of Nuclear Medicine Maastricht University Medical CenterMaastrichtThe Netherlands
  3. 3.Department of Radiology Director, Quantitative Imaging Center (QIC)Boston University School of Medicine Section Chief, Musculoskeletal Imaging Boston Medical CenterBostonUSA
  4. 4.Clinic for Nuclear Medicine University Hospital RWTH Aachen UniversityAachen Germany
  5. 5.Russell H Morgan Departments of Radiology and Radiological Sciences InstitutionsThe Johns Hopkins Medical InstitutionsBaltimore USA

Personalised recommendations