Pulse Sequences for Interventional MRI

Part of the Medical Radiology book series (MEDRAD)


Diagnostic MRI sequences aim to provide varied contrast mechanisms to increase the sensitivity and specificity of characterizing abnormal or degenerative tissue. Sequences are normally run in a “batch mode,” with each sequence being completed before another is begun. Interventional imaging sequences have numerous important differences from their diagnostic counterparts. First, they serve other roles besides providing imaging contrast. These include device visualization and tracking, 2D and 3D visualization of tissue near the device, and therapeutic monitoring. Pulse sequences for MRI-guided procedures are not run in batch mode and require interactive control. The sequences are interleaved and swapped in and out as the procedure demands. Finally, when latency is crucial, the design of these pulse sequences and their reconstruction algorithms must be constrained to minimize the time between the start of the acquisition and display of the reconstructed output. These differences create different requirements for pulse sequences and the way pulse sequences communicate with the rest of the scanner. Fortunately, recent developments in rapid contrast generation, k-space trajectory schemes, and interventional software environment platforms provide foundations for flexible configurations to meet the imaging needs of interventions. This chapter presents an overview of some of the methods used in designing and implementing pulse sequences for MRI-guided interventional procedures. The last section of the chapter describes platforms that integrate interactive control, acquisition, reconstruction, scan plane control, and visualization that significantly simplify the design of imaging capabilities for MRI-guided procedures.


Spiral Trajectory Interventional Imaging Radial Trajectory Fast Field Echo Balance SSFP 


  1. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48:297–305PubMedCrossRefGoogle Scholar
  2. Beatty PJ, Nishimura DG, Pauly JM (2005) Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 24:799–808PubMedCrossRefGoogle Scholar
  3. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179:777–781PubMedGoogle Scholar
  4. Bernstein MA, King KF, Zhou ZJ (2004) Handbook of MRI pulse sequences. Academic Press, BostonGoogle Scholar
  5. Block KT, Frahm J (2005) Spiral imaging: a critical appraisal. J Magn Reson Imaging 21:657–668PubMedCrossRefGoogle Scholar
  6. Bornert P, Schomberg H, Aldefeld B, Groen J (1999) Improvements in spiral MR imaging. MAGMA 9:29–41PubMedGoogle Scholar
  7. Buecker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Molgaard-Nielsen A, Guenther RW (2000) Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging 12:616–622PubMedCrossRefGoogle Scholar
  8. Butts K, Sinclair J, Daniel BL, Wansapura J, Pauly JM (2001) Temperature quantitation and mapping of frozen tissue. J Magn Reson Imaging 13:99–104PubMedCrossRefGoogle Scholar
  9. Cukur T, Nishimura DG (2008) Fat-water separation with alternating repetition time balanced SSFP. Magn Reson Med 60:479–484PubMedCrossRefGoogle Scholar
  10. Dale B, Wendt M, Duerk JL (2001) A rapid look-up table method for reconstructing MR images from arbitrary k-space trajectories. IEEE Trans Med Imaging 20:207–217PubMedCrossRefGoogle Scholar
  11. Derakhshan JJ, Griswold MA, Nour SG, Sunshine JL, Duerk JL (2010) Characterization and reduction of saturation banding in multiplanar coherent and incoherent steady-state imaging. Magn Reson Med 63:1415–1421PubMedCrossRefGoogle Scholar
  12. Duerk JL, Lewin JS, Wendt M et al (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at .2 T. J Magn Reson Imaging 8:203–208Google Scholar
  13. Dumoulin CL, Mallozzi RP, Darrow RD et al (2010) Phase-field dithering for active catheter tracking. Magn Reson Med 63(5):1398–1403Google Scholar
  14. Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 132:150–153PubMedCrossRefGoogle Scholar
  15. Edelstein WA, Hutchison JM, Johnson G, Redpath T (1980) Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 25:751–756PubMedCrossRefGoogle Scholar
  16. Gewalt SL, Glover GH, Hedlund LW, Cofer GP, MacFall JR, Johnson GA (1993) MR microscopy of the rat lung using projection reconstruction. Magn Reson Med 29:99–106PubMedCrossRefGoogle Scholar
  17. Glover GH (1999) Simple analytic spiral k-space algorithm. Magn Reson Med 42:412–415PubMedCrossRefGoogle Scholar
  18. Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28:275–289PubMedCrossRefGoogle Scholar
  19. Gmitro AF, Alexander AL (1993) Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med 29:835–838PubMedCrossRefGoogle Scholar
  20. Irarrazabal P, Nishimura DG (1995) Fast three dimensional magnetic resonance imaging. Magn Reson Med 33:656–662PubMedCrossRefGoogle Scholar
  21. Jackson J, Meyer C, Nishimura D (1991) Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 10:473–478PubMedCrossRefGoogle Scholar
  22. Johnson KM, Velikina J, Wu Y, Kecskemeti S, Wieben O, Mistretta CA (2008) Improved waveform fidelity using local HYPR reconstruction (HYPR LR). Magn Reson Med 59:456–462PubMedCrossRefGoogle Scholar
  23. Jung Y, Jashnani Y, Kijowski R, Block WF (2007) Consistent non-Cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med 57:206–212PubMedCrossRefGoogle Scholar
  24. King KF, Foo TK, Crawford CR (1995) Optimized gradient waveforms for spiral scanning. Magn Reson Med 34:156–160PubMedCrossRefGoogle Scholar
  25. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351PubMedCrossRefGoogle Scholar
  26. Krafft A, Brunner A, Rauschenberg J et al (2011) Dephased double echo imaging with outer volume suppression for accelerated white marker imaging in MR-guided interventions. In: ISMRM, p 3743Google Scholar
  27. Lauterbur PC (1973) Image formations by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  28. Lauzon ML, Rutt BK (1998) Polar sampling in k-space: reconstruction effects. Magn Reson Med 40:769–782PubMedCrossRefGoogle Scholar
  29. Leupold J, Hennig J, Scheffler K (2006) Alternating repetition time balanced steady state free precession. Magn Reson Med 55:557–565PubMedCrossRefGoogle Scholar
  30. Lorenz CH, Kirchberg KJ, Zuehlsdorff S (2005) Interactive frontend (IFE): a platform for graphical MR scanner control and scan automation. In: Proceedings of ISMRM, Miami, 2005Google Scholar
  31. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRefGoogle Scholar
  32. Maier F, Krafft A, Stafford R et al (2011) 3D passive marker tracking for MR-guided interventions. In: ISMRM, p 3749Google Scholar
  33. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213PubMedCrossRefGoogle Scholar
  34. Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson K (2006) Highly constrained backprojection for time-resolved MRI. Magn Reson Med 55:30–40PubMedCrossRefGoogle Scholar
  35. Nishimura DG, Jackson JI, Pauly JM (1991) On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 22:481–492PubMedCrossRefGoogle Scholar
  36. Oesterle C, Markl M, Strecker R, Kraemer FM, Hennig J (1999) Spiral reconstruction by regridding to a large rectilinear matrix: a practical solution for routine systems. J Magn Reson Imaging 10:84–92PubMedCrossRefGoogle Scholar
  37. O’Sullivan J (1985) A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans Med Imaging M1:200CrossRefGoogle Scholar
  38. Ouyang C, Wech T, Vij K et al (2011) Online real-time visualization of an active catheter using compressed sensing in interventional MRI. In: ISMRM, p 3748Google Scholar
  39. Patil S, Bieri O, Jhooti P, Scheffler K (2009) Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE). Magn Reson Med 62:935–942PubMedCrossRefGoogle Scholar
  40. Pintilie S, Biswas L, Anderson K (2009) Visualization software for real-time image-guided therapeutic in cardiovascular interventions. Paper presented at the MICCAIGoogle Scholar
  41. Pipe JG, Menon P (1999) Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med 41:179–186PubMedCrossRefGoogle Scholar
  42. Rasche V, de Boer RW, Holz D, Proksa R (1995) Continuous radial data acquisition for dynamic MRI. Magn Reson Med 34:754–761PubMedCrossRefGoogle Scholar
  43. Rasche V, Holz D, Kohler J, Proksa R, Roschmann P (1997) Catheter tracking using continuous radial MRI. Magn Reson Med 37:963–968PubMedCrossRefGoogle Scholar
  44. Rasche V, Holz D, Proksa R (1999) MR fluoroscopy using projection reconstruction multi-gradient-echo (prMGE) MRI. Magn Reson Med 42:324–334PubMedCrossRefGoogle Scholar
  45. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644PubMedCrossRefGoogle Scholar
  46. Santos JM, Wright GA, Pauly JM (2004) Flexible real-time magnetic resonance imaging framework. Conf Proc IEEE Eng Med Biol Soc 2:1048–1051PubMedGoogle Scholar
  47. Scheffler K, Hennig J (1998) Reduced circular field-of-view imaging. Magn Reson Med 40:474–480PubMedCrossRefGoogle Scholar
  48. Schmitt P, Jakob PM, Kotas M et al (2011) T-one insensitive steady state imaging: a framework for purely T(2) -weighted trueFISP. Magn Reson MedGoogle Scholar
  49. Shankaranarayanan A, Wendt M, Aschoff AJ, Lewin JS, Duerk JL (2001) Radial keyhole sequences for low field projection reconstruction interventional MRI. J Magn Reson Imaging 13:142–151PubMedCrossRefGoogle Scholar
  50. Shimizu K, Mulkern RV, Oshio K, Panych LP, Yoo SS, Kikinis R, Jolesz FA (1998) Rapid tip tracking with MRI by a limited projection reconstruction technique. J Magn Reson Imaging 8:262–264PubMedCrossRefGoogle Scholar
  51. Smink JHM, Holthuizen R, Krueger S (2011) eXTernal Control (XTC): a flexible, real-time, low-latency, bi-directional scanner interface. In: ISMRMGoogle Scholar
  52. Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824PubMedCrossRefGoogle Scholar
  53. Sumbul U, Santos JM, Pauly JM (2009) A practical acceleration algorithm for real-time imaging. IEEE Trans Med Imaging 28:2042–2051PubMedCrossRefGoogle Scholar
  54. Tsai CM, Nishimura DG (2000) Reduced aliasing artifacts using variable-density k-space sampling trajectories. Magn Reson Med 43:452–458PubMedCrossRefGoogle Scholar
  55. Vasanawala SS, Pauly JM, Nishimura DG (1999) Fluctuating equilibrium MRI. Magn Reson Med 42:876–883PubMedCrossRefGoogle Scholar
  56. Vasanawala SS, Pauly JM, Nishimura DG (2000) Linear combination steady-state free precession MRI. Magn Reson Med 43:82–90PubMedCrossRefGoogle Scholar
  57. Weiss S, Rasche V (1999) Projection-reconstruction reduces FOV imaging. Magn Reson Imaging 17:517–525PubMedCrossRefGoogle Scholar
  58. Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS, Duerk JL (2000) Active MR guidance of interventional devices with target-navigation. Magn Reson Med 44:56–65PubMedCrossRefGoogle Scholar
  59. Zhang S, Olthoff A, Frahm J (2012) Real-time magnetic resonance imaging of normal swallowing. J Magn Reson ImagingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations