Advertisement

Radiotherapy Planning

  • Minh Tam Truong
  • Rathan M. Subramaniam
Part of the Medical Radiology book series (MEDRAD)

Abstract

Advances in radiotherapy planning and delivery in the past decade, including the increased use of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT), have made accurate tumor volume delineation critical for radiotherapy planning, particularly since IMRT results in sharp dose gradients between normal tissue and the tumor. As a result, with the simultaneous rapid growth of PET/CT utilization, integration of PET/CT into radiotherapy planning has been important for accurate and consistent tumor volume delineation, improved identification of nodal and distant metastatic disease and assessing response to radiotherapy. Determining the optimal method of using PET/CT for tumor volume delineation with different methods of volumetric segmentation is currently being studied. Experimental studies with novel PET tracers and applications of PET to adaptive radiotherapy planning based on PET/CT response are also being carried out. PET/CT is an important imaging modality for radiotherapy planning in many solid tumors.

Keywords

Target Volume Planning Target Volume Clinical Target Volume Stereotactic Body Radiotherapy Gross Tumor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44(6):1299–1306 (discussion 306–307)PubMedGoogle Scholar
  2. Anderson C, Koshy M et al (2007) PET-CT fusion in radiation management of patients with anorectal tumors. Int J Radiat Oncol Biol Phys 69(1):155–162PubMedCrossRefGoogle Scholar
  3. Ashamalla H, Guirgius A et al (2007) The impact of positron emission tomography/computed tomography in edge delineation of gross tumor volume for head and neck cancers. Int J Radiat Oncol Biol Phys 68(2):388–395PubMedCrossRefGoogle Scholar
  4. Ashamalla H, Rafla S et al (2005) The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63(4):1016–1023PubMedCrossRefGoogle Scholar
  5. Bassi MC, Turri L et al (2008) FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys 70(5):1423–1426PubMedCrossRefGoogle Scholar
  6. Berson AM, Stein NF et al (2009) Variability of gross tumor volume delineation in head-and-neck cancer using PET/CT fusion, Part II: the impact of a contouring protocol. Med Dosim 34(1):30–35PubMedCrossRefGoogle Scholar
  7. Biehl KJ, Kong F-M, Dehdashti F et al (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47(11):1808–1812PubMedGoogle Scholar
  8. Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86PubMedCrossRefGoogle Scholar
  9. Brianzoni E, Rossi G et al (2005) Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume. Eur J Nucl Med Mol Imaging 32(12):1392–1399PubMedCrossRefGoogle Scholar
  10. Breen SL, Publicover J et al (2007) Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 68(3):763–770PubMedCrossRefGoogle Scholar
  11. Caldwell CB, Mah K et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931PubMedCrossRefGoogle Scholar
  12. Ceresoli GL, Cattaneo GM, Castellone P et al (2007) Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation. Tumori 93(1):88–96PubMedGoogle Scholar
  13. Ciernik IF, Dizendorf E et al (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57(3):853–863PubMedCrossRefGoogle Scholar
  14. Ciernik IF, Huser M et al (2005) Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 62(3):893–900PubMedCrossRefGoogle Scholar
  15. Daisne JF, Duprez T et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233(1):93–100PubMedCrossRefGoogle Scholar
  16. Day E, Betler J et al (2009) A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 36(10):4349–4358PubMedCrossRefGoogle Scholar
  17. Deantonio L, Beldi D et al (2008) FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol 3:29PubMedCrossRefGoogle Scholar
  18. Deniaud-Alexandre E, Touboul E, Lerouge D et al (2005) Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 63(5):1432–1441PubMedCrossRefGoogle Scholar
  19. De Ruysscher D, Wanders S, Minken A et al (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77(1):5–10PubMedCrossRefGoogle Scholar
  20. Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, Nuyts S (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 50(7):1020–1027PubMedCrossRefGoogle Scholar
  21. Dizendorf EV, Baumert BG et al (2003) Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med 44(1):24–29PubMedGoogle Scholar
  22. El-Bassiouni M, Ciernik IF et al (2007) [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys 69(1):286–293PubMedCrossRefGoogle Scholar
  23. Erdi YE, Rosenzweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62(1):51–60PubMedCrossRefGoogle Scholar
  24. Ford EC, Kinahan PE, Hanlon L et al (2006) Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys 33(11):4280–4288PubMedCrossRefGoogle Scholar
  25. Fox JL, Rengan R et al (2005) Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 62(1):70–75PubMedCrossRefGoogle Scholar
  26. Gardner M, Halimi P et al (2009) Use of single MRI and 18F-FDG PET-CT scans in both diagnosis and radiotherapy treatment planning in patients with head and neck cancer: advantage on target volume and critical organ delineation. Head Neck 31(4):461–467PubMedCrossRefGoogle Scholar
  27. Geets X, Daisne JF et al (2006) Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 78(3):291–297PubMedCrossRefGoogle Scholar
  28. Giraud P, Grahek D et al (2001) CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49(5):1249–1257PubMedCrossRefGoogle Scholar
  29. Gondi V, Bradley K et al (2007) Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(1):187–195PubMedCrossRefGoogle Scholar
  30. Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL (2007) Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(3):709–719PubMedCrossRefGoogle Scholar
  31. Guido A, Fuccio L et al (2009) Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 73(3):759–63PubMedCrossRefGoogle Scholar
  32. Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  33. Hanna GG, McAleese J et al (2009) (18)F-FDG PET-CT simulation for Non-Small-Cell Lung Cancer: Effect in Patients Already Staged by PET-CT. Int J Radiat Oncol Biol PhysGoogle Scholar
  34. Han D, Yu J et al (2010) Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys 76(4):1235–1241PubMedCrossRefGoogle Scholar
  35. Hebert ME, Lowe VJ et al (1996) Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 19(4):416–421PubMedCrossRefGoogle Scholar
  36. Heron DE, Andrade RS et al (2004) Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys 60(5):1419–1424PubMedCrossRefGoogle Scholar
  37. Hong TS, Killoran JH et al (2008) Impact of manual and automated interpretation of fused PET/CT data on esophageal target definitions in radiation planning. Int J Radiat Oncol Biol Phys 72(5):1612–1618PubMedCrossRefGoogle Scholar
  38. Hwang AB, Bacharach SL et al (2009) Can positron emission tomography (PET) or PET/Computed Tomography (CT) acquired in a nontreatment position be accurately registered to a head-and-neck radiotherapy planning CT? Int J Radiat Oncol Biol Phys 73(2):578–584PubMedCrossRefGoogle Scholar
  39. Igdem S, Alco G et al (2010) The Application of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning: Effect on Gross Target Volume Definition and Treatment Management. Clin Oncol (R Coll Radiol)Google Scholar
  40. International Commission on Radiation Units and Measurements (1993) Prescribing, recording and reporting Photon Bean Theraphy ICRU Report 50Google Scholar
  41. International Commission on Radiation Units and Measurements (1999) Prescribing, recording and reporting Photon Bean Theraphy ICRU Report 62Google Scholar
  42. Ireland RH, Dyker KE et al (2007) Nonrigid image registration for head and neck cancer radiotherapy treatment planning with PET/CT. Int J Radiat Oncol Biol Phys 68(3):952–957PubMedCrossRefGoogle Scholar
  43. Ishikita T, Oriuchi N et al (2010) Additional value of integrated PET/CT over PET alone in the initial staging and follow up of head and neck malignancy. Ann Nucl Med 24:77–82Google Scholar
  44. Kalff V, Hicks RJ, Mac Manus MP et al (2001) Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 19(1):111–118PubMedGoogle Scholar
  45. Kiffer JD, Berlangieri SU et al (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19(3):167–177PubMedCrossRefGoogle Scholar
  46. Konski A, Doss M et al (2005) The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 61(4):1123–1128PubMedCrossRefGoogle Scholar
  47. Krengli M, Milia ME et al (2010) FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat Oncol 5(1):10Google Scholar
  48. Koshy M, Paulino AC et al (2005) F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck 27(6):494–502PubMedCrossRefGoogle Scholar
  49. Kruser TJ, Bradley KA et al (2009) The impact of hybrid PET-CT scan on overall oncologic management, with a focus on radiotherapy planning: a prospective, blinded study. Technol Cancer Res Treat 8(2):149–158PubMedGoogle Scholar
  50. Larson SM, Nehmeh SA, Erdi YE, Humm JL (2005) PET/CT in non-small-cell lung cancer: value of respiratory-gated PET. Chang Gung Med J 28(5):306–314PubMedGoogle Scholar
  51. Lee NY, Mechalakos JG, Nehmeh S et al (2008) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70(1):2–13PubMedCrossRefGoogle Scholar
  52. Leong T, Everitt C et al (2006) A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 78(3):254–261PubMedCrossRefGoogle Scholar
  53. Mac Manus MP, Hicks RJ, Ball DL et al (2001) F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92(4):886–895PubMedCrossRefGoogle Scholar
  54. Mac Manus M, D’Costa I et al (2007) Comparison of CT and positron emission tomography/CT coregistered images in planning radical radiotherapy in patients with non-small-cell lung cancer. Australas Radiol 51(4):386–393CrossRefGoogle Scholar
  55. Mah K, Caldwell CB, Ung YC et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52(2):339–350PubMedCrossRefGoogle Scholar
  56. Matsuo M, Miwa K, Shinoda J et al (2009) Target definition by C11-methionine-PET for the radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 74(3):714–722PubMedCrossRefGoogle Scholar
  57. Messa C, Ceresoli GL, Rizzo G et al (2005) Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 49(3):259–266PubMedGoogle Scholar
  58. Moureau-Zabotto L, Touboul E et al (2005) Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 63(2):340–345PubMedCrossRefGoogle Scholar
  59. Muijs CT, Schreurs LM et al (2009) Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol 93(3):447–453PubMedCrossRefGoogle Scholar
  60. Murakami R, Uozumi H et al (2007) Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 68(2):377–382PubMedCrossRefGoogle Scholar
  61. Munley MT, Marks LB et al (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23(2):105–114PubMedCrossRefGoogle Scholar
  62. Newbold KL, Partridge M et al (2008) Evaluation of the role of 18FDG-PET/CT in radiotherapy target definition in patients with head and neck cancer. Acta Oncol 47(7):1229–1236PubMedCrossRefGoogle Scholar
  63. Nestle U, Kremp S et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46(8):1342–1348PubMedGoogle Scholar
  64. Nestle U, Walter K et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44(3):593–597PubMedCrossRefGoogle Scholar
  65. Nishioka T, Shiga T et al (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53(4):1051–1057PubMedCrossRefGoogle Scholar
  66. Paulino AC, Koshy M et al (2005) Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61(5):1385–1392PubMedCrossRefGoogle Scholar
  67. Paulsen F, Scheiderbauer J et al (2006) First experiences of radiation treatment planning with PET/CT. Strahlenther Onkol 182(7):369–375PubMedCrossRefGoogle Scholar
  68. Paskeviciute B, Bolling T et al (2009) Impact of (18)F-FDG-PET/CT on staging and irradiation of patients with locally advanced rectal cancer. Strahlenther Onkol 185(4):260–265PubMedCrossRefGoogle Scholar
  69. Patel DA, Chang ST et al (2007) Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 6(1):31–36PubMedGoogle Scholar
  70. Pehlivan B, Topkan E et al (2009) Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma. Radiat Oncol 4:35PubMedCrossRefGoogle Scholar
  71. Pfannenberg AC, Aschoff P et al (2007) Low dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and therapy planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34(1):36–44PubMedCrossRefGoogle Scholar
  72. Pinkawa M, Eble MJ, Mottaghy FM (2011) PET and PET/CT in radiation treatment planning for prostate cancer. Expert Rev Anticancer Ther 11(7):1033–1039PubMedCrossRefGoogle Scholar
  73. Rahn AN, Baum RP et al (1998) Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 174(7):358–364PubMedCrossRefGoogle Scholar
  74. Riegel AC, Berson AM et al (2006) Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 65(3):726–732PubMedCrossRefGoogle Scholar
  75. Rothschild S, Studer G et al (2007) PET/CT staging followed by Intensity-Modulated Radiotherapy (IMRT) improves treatment outcome of locally advanced pharyngeal carcinoma: a matched-pair comparison. Radiat Oncol 2:22PubMedCrossRefGoogle Scholar
  76. Scarfone C, Lavely WC et al (2004) Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 45(4):543–552PubMedGoogle Scholar
  77. Schinagl DA, Vogel WV et al (2007) Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 69(4):1282–1289PubMedCrossRefGoogle Scholar
  78. Schreurs LM, Busz DM et al (2010) Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability*. Dis EsophagusGoogle Scholar
  79. Schwartz DL, Ford E et al (2005a) FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 61(1):129–136PubMedCrossRefGoogle Scholar
  80. Schwartz DL, Ford EC et al (2005b) FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 27(6):478–487PubMedCrossRefGoogle Scholar
  81. Schmucking M, Baum RP et al (2003) Molecular whole-body cancer staging using positron emission tomography: consequences for therapeutic management and metabolic radiation treatment planning. Recent Results Cancer Res 162:195–202PubMedCrossRefGoogle Scholar
  82. Shimizu S, Hosokawa M et al (2009) Can hybrid FDG-PET/CT detect subclinical lymph node metastasis of esophageal cancer appropriately and contribute to radiation treatment planning? A comparison of image-based and pathological findings. Int J Clin Oncol 14(5):421–425PubMedCrossRefGoogle Scholar
  83. Song Y, Chan M et al (2006) Inter-modality variation in gross tumor volume delineation in 18FDG-PET guided IMRT treatment planning for lung cancer. Conf Proc IEEE Eng Med Biol Soc 1:3803–3806PubMedGoogle Scholar
  84. Soto DE, Kessler ML et al (2008) Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol 89(1):13–18PubMedCrossRefGoogle Scholar
  85. Steffen IG, Wust P et al (2009) Value of Combined PET/CT for Radiation Planning in CT-Guided Percutaneous Interstitial High-Dose-Rate Single-Fraction Brachytherapy for Colorectal Liver Metastases. Int J Radiat Oncol Biol PhysGoogle Scholar
  86. Steenbakkers RJ, Duppen JC et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64(2):435–448PubMedCrossRefGoogle Scholar
  87. Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G (2010) Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. Am J Neuroradiol 31(4):598–604PubMedCrossRefGoogle Scholar
  88. Subedi N, Scarsbrook A, et al (2009) The clinical impact of integrated FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer 64(3):301–307PubMedCrossRefGoogle Scholar
  89. Stroom J, Blaauwgeers H et al (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69(1):267–275PubMedCrossRefGoogle Scholar
  90. Tonkopi E, Chi PC et al (2010) Average CT in PET studies of colorectal cancer patients with metastasis in the liver and esophageal cancer patients. J Appl Clin Med Phys 11(1):3073Google Scholar
  91. Truong MT, Grillone G, Tschoe C, Chin L, Kachnic LA, Jalisi S (2009) Emerging applications of stereotactic radiotherapy in head and neck cancer. Neurosurg Focus 27(6):E11PubMedCrossRefGoogle Scholar
  92. van Baardwijk A, Bosmans G et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68(3):771–778PubMedCrossRefGoogle Scholar
  93. van Der Wel A, Nijsten S et al (2005) Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2–N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 61(3):649–655CrossRefGoogle Scholar
  94. Vanuytsel LJ, Vansteenkiste JF et al (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55(3):317–324PubMedCrossRefGoogle Scholar
  95. Vernon MR, Maheshwari M et al (2008) Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 70(3):678–684PubMedCrossRefGoogle Scholar
  96. Vesprini D, Ung Y et al (2008) Improving observer variability in target delineation for gastro-oesophageal cancer–the role of (18F)fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Clin Oncol (R Coll Radiol) 20(8):631–638CrossRefGoogle Scholar
  97. Vrieze O, Haustermans K et al (2004) Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 73(3):269–275PubMedCrossRefGoogle Scholar
  98. Wang D, Schultz CJ et al (2006) Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 65(1):143–151PubMedCrossRefGoogle Scholar
  99. Wong WL, Hussain K et al (1996) Validation and clinical application of computer-combined computed tomography and positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose head and neck images. Am J Surg 172(6):628–632PubMedCrossRefGoogle Scholar
  100. Wong RJ, Lin DT, Schoder H et al (2002) Diagnostic and prognostic value of [18F]Fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 20(20):4199–4208PubMedCrossRefGoogle Scholar
  101. Wu K, Ung YC et al (2009) PET CT Thresholds for Radiotherapy Target Definition in Non-Small-Cell Lung Cancer: How Close Are We to the Pathologic Findings? Int J Radiat Oncol Biol PhysGoogle Scholar
  102. Xia P, Anols HI, Ling CC (2004) Three-Dimensional conformal radiotherapy and intensity-modulated radiotherapy. In: Leibel SA, Phillips TL (eds) Textbook of radiation oncology, 2nd edn. Elsevier Inc, PhiladelphiaGoogle Scholar
  103. Yu J, Li X, Xing L et al (2009a) Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 75(5):1468–1474PubMedCrossRefGoogle Scholar
  104. Yu W, Fu XL et al (2009b) GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol 93(3):441–446PubMedCrossRefGoogle Scholar
  105. Yu HM, Liu YF et al (2009c) Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 72(1):104–113PubMedCrossRefGoogle Scholar
  106. Zasadny KR, Kison PV et al (1998) FDG-PET Determination of Metabolically Active Tumor Volume and Comparison with CT. Clin Positron Imaging 1(2):123–129PubMedCrossRefGoogle Scholar
  107. Zheng XK, Chen LH et al (2006) Influence of [18F] fluorodeoxyglucose positron emission tomography on salvage treatment decision making for locally persistent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 65(4):1020–1025PubMedCrossRefGoogle Scholar
  108. Zhong X, Yu J et al (2009) Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 73(1):136–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Boston University School of MedicineBostonUSA
  2. 2.Department of Radiation OncologyBoston Medical CenterBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations