Advertisement

Magnetic Resonance Imaging of the Bone Marrow Contrast Media for Bone Marrow Imaging

  • Daniel Golovko
  • Elizabeth Sutton
  • Heike E. Daldrup-Link
Part of the Medical Radiology book series (MEDRAD)

Abstract

Non-enhanced MR scans provide information about the presence and extent of bone marrow pathologies. However, for specific indications, contrast agents can provide additional functional and metabolic information. Both gadolinium (Gd)-based low molecular weight contrast agents as well as ultrasmall superparamagnetic iron oxide (USPIO) achieve MR signal enhancement by decreasing T1- and T2-relaxation times. However, both classes of contrast agents have very different properties and pharmacokinetics. Low molecular weight Gd-chelates have a relatively short blood half life and provide early, brief tissue enhancement, whereas USPIO have a long blood half life, provide delayed tissue enhancement, and are actively taken up by phagocytic myeloid cells. Nephrogenic systemic fibrosis (NSF) is a known side effect of Gd-based agents and occurs in patients with chronic kidney disease. USPIO are metabolized by cells of the reticuloendothelial system, that have been proven to be safe in patients with chronic kidney disease, and thus may be an alternative in this patient population. Contrast-enhanced MRI can also improve the detection and characterization of bone marrow pathologies, guide biopsies, and monitor treatment effects. This chapter will provide an overview over various Gd-chelates and USPIO compounds as well as their respective applications for bone marrow imaging.

Keywords

Contrast Agent Nephrogenic System Fibrosis Gadopentetate Dimeglumine Contrast Agent Administration Gadoterate Meglumine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26(7):414–418PubMedCrossRefGoogle Scholar
  2. Bierry G, Jehl F, Prevost G, Mohr M, Meyer N, Dietemann JL, Kremer S (2008) Percutaneous inoculated rabbit model of intervertebral disc space infection: magnetic resonance imaging features with pathological correlation. Joint Bone Spine 75(4):465–470. doi: 10.1016/j.jbspin.2007.06.018 PubMedCrossRefGoogle Scholar
  3. Bollow M, Knauf W, Korfel A, Taupitz M, Schilling A, Wolf KJ, Hamm B (1997) Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging 7(1):241–250PubMedCrossRefGoogle Scholar
  4. Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66(2):230–234. doi: 10.1016/j.ejrad.2008.02.011 PubMedCrossRefGoogle Scholar
  5. Daldrup-Link HE, Rummeny EJ, Ihssen B, Kienast J, Link TM (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12(6):1557–1566. doi: 10.1007/s00330-001-1270-5 PubMedCrossRefGoogle Scholar
  6. Davies AM, Vanel D (1998) Follow-up of musculoskeletal tumors I local recurrence. Eur Radiol 8(5):791–799PubMedCrossRefGoogle Scholar
  7. Erlemann R, Reiser MF, Peters PE, Vasallo P, Nommensen B, Kusnierz-Glaz CR, Ritter J, Roessner A (1989) Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology 171(3):767–773PubMedGoogle Scholar
  8. Erlemann R, Sciuk J, Bosse A, Ritter J, Kusnierz-Glaz CR, Peters PE, Wuisman P (1990) Response of osteosarcoma and ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175(3):791–796PubMedGoogle Scholar
  9. Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43(12):817–828. doi: 10.1097/RLI.0b013e3181852171 PubMedCrossRefGoogle Scholar
  10. Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi: 10.1093/ndt/gfk062 PubMedCrossRefGoogle Scholar
  11. Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, Hogendoorn PC (1995) Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol 50(6):384–390PubMedCrossRefGoogle Scholar
  12. Idee JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20(6):563–576. doi: 10.1111/j.1472-8206.2006.00447.x PubMedCrossRefGoogle Scholar
  13. Kaim AH, Jundt G, Wischer T, O’Reilly T, Frohlich J, von Schulthess GK, Allegrini PR (2003) Functional-morphologic MR imaging with ultrasmall superparamagnetic particles of iron oxide in acute and chronic soft-tissue infection: study in rats. Radiology 227(1):169–174. doi: 10.1148/radiol.2272020490 PubMedCrossRefGoogle Scholar
  14. Knopp MV, Balzer T, Esser M, Kashanian FK, Paul P, Niendorf HP (2006) Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use. Invest Radiol 41(6):491–499. doi: 10.1097/01.rli.0000209657.16115.42 PubMedCrossRefGoogle Scholar
  15. Landry R, Jacobs PM, Davis R, Shenouda M, Bolton WK (2005) Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am J Nephrol 25(4):400–410. doi: 10.1159/000087212 PubMedCrossRefGoogle Scholar
  16. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMP imaging: theory and design. Chem Rev 87(5):901–927. doi: 10.1021/cr00081a003 CrossRefGoogle Scholar
  17. Lawrence JA, Babyn PS, Chan HS, Thorner PS, Pron GE, Krajbich IJ (1993) Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 189(1):43–47PubMedGoogle Scholar
  18. Lutz AM, Seemayer C, Corot C, Gay RE, Goepfert K, Michel BA, Marincek B, Gay S, Weishaupt D (2004) Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology 233(1):149–157. doi: 10.1148/radiol.2331031402 PubMedCrossRefGoogle Scholar
  19. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362. doi: 10.1681/ASN.2006060601 PubMedCrossRefGoogle Scholar
  20. Metz S, Lohr S, Settles M, Beer A, Woertler K, Rummeny EJ, Daldrup-Link HE (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-hodgkin lymphomas. Eur Radiol 16(3):598–607. doi: 10.1007/s00330-005-0045-9 PubMedCrossRefGoogle Scholar
  21. Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75(5):465–474. doi: 10.1038/ki.2008.496 PubMedCrossRefGoogle Scholar
  22. Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, DeLapaz RL, Lee HJ, Magro CM, Valeri AM (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248(3):807–816. doi: 10.1148/radiol.2483071863 PubMedCrossRefGoogle Scholar
  23. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39(1):56–63. doi: 10.1097/01.rli.0000101027.57021.28 PubMedCrossRefGoogle Scholar
  24. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004) Myocardial perfusion and MR angiography of chest with sh u 555 c: results of placebo-controlled clinical phase i study. Radiology 231(2):474–481. doi: 10.1148/radiol.2312021251 PubMedCrossRefGoogle Scholar
  25. Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247(3):608–612. doi: 1148/radiol.2473071975 PubMedCrossRefGoogle Scholar
  26. Rossi G, Mavrogenis AF, Rimondi E, Ciccarese F, Tranfaglia C, Angelelli B, Fiorentini G, Bartalena T, Errani C, Ruggieri P, Mercuri M (2011) Selective arterial embolisation for bone tumours: experience of 454 cases. Radiol Med 116 (5):793–808. doi: 10.1007/s11547-011-0670-0 Google Scholar
  27. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157. doi: 10.1148/radiol.2431062144 PubMedCrossRefGoogle Scholar
  28. Schepper AM, De Beuckeleer LH, Vandevenne JE (1999) Imaging of soft tissue tumors in the pediatric patient. Semin Musculoskelet Radiol 3(1):59–80. smr00073PubMedCrossRefGoogle Scholar
  29. Shapeero LG, Vanel D, Verstraete KL, Bloem JL (1999) Dynamic contrast-enhanced MR imaging for soft tissue sarcomas. Semin Musculoskelet Radiol 3(2):101–114. doi: 10.1055/s-2008-1080055 PubMedCrossRefGoogle Scholar
  30. Simon GH, Raatschen HJ, Wendland MF, von Vopelius-Feldt J, Fu Y, Chen MH, Daldrup-Link HE (2005) Ultrasmall superparamagnetic iron-oxide-enhanced MR imaging of normal bone marrow in rodents: original research original research. Acad Radiol 12(9):1190–1197. doi: 10.1016/j.acra.2005.05.014 PubMedCrossRefGoogle Scholar
  31. Spinowitz BS, Kausz AT, Baptista J, Noble SD, Sothinathan R, Bernardo MV, Brenner L, Pereira BJ (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19(8):1599–1605. doi: 10.1681/ASN.2007101156 PubMedCrossRefGoogle Scholar
  32. Stabler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser MF (1996) Contrast enhancement and quantitative signal analysis in mr imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. AJR Am J Roentgenol 167(4):1029–1036PubMedGoogle Scholar
  33. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38. doi: 10.1007/s10439-005-9002-7 PubMedCrossRefGoogle Scholar
  34. Turetschek K, Huber S, Floyd E, Helbich T, Roberts TP, Shames DM, Tarlo KS, Wendland MF, Brasch RC (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218(2):562–569PubMedGoogle Scholar
  35. van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC (1995) Osteosarcoma and ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol 165(3):593–598PubMedGoogle Scholar
  36. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465PubMedGoogle Scholar
  37. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34(3):229–246. doi: S0720-048X(00)00202-3 PubMedCrossRefGoogle Scholar
  38. Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6(2):311–321PubMedCrossRefGoogle Scholar
  39. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2013

Authors and Affiliations

  • Daniel Golovko
    • 1
  • Elizabeth Sutton
    • 2
  • Heike E. Daldrup-Link
    • 3
  1. 1.Department of Internal MedicineUniversity of Colorado HospitalAuroraUSA
  2. 2.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Department of RadiologyLucile Packard Children’s Hospital, Stanford UniversityStanfordUSA

Personalised recommendations