Advertisement

Pediatric

  • Hossein Jadvar
  • Frederic H. Fahey
  • Barry L. Shulkin
Part of the Medical Radiology book series (MEDRAD)

Abstract

Positron emission tomography (PET) has emerged as an important diagnostic tool in the imaging evaluation of children with cancer. The recent advent of hybrid positron emission tomography/computed tomography (PET/CT) imaging systems has provided additional diagnostic capability by providing precise anatomic localization of metabolic information and metabolic characterization of normal and abnormal structures. The use of CT transmission scanning for attenuation correction has shortened the total acquisition time, which is a desirable attribute in pediatric imaging. Moreover, accumulating clinical experience, expansion of the regional distribution of the most common PET radiotracer, fluorine-18 fluorodeoxyglucose (FDG), and the introduction of mobile PET units have improved access to this powerful diagnostic imaging technology. In this chapter, we review the clinical applications of PET and PET/CT in pediatric oncology. General considerations in patient preparation and radiation dosimetry will be discussed.

Keywords

Positron Emission Tomography Standardize Uptake Value Ewing Sarcoma Osseous Metastasis MIBG Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Dayem HM (1997) The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med 27:355–363PubMedCrossRefGoogle Scholar
  2. Accorsi R, Karp JS, Surti S (2010) Improved dose regimen in pediatric PET. J Nucl Med 51:293–300PubMedCrossRefGoogle Scholar
  3. Alessio AM, Kinahan PE, Manchanda V et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50(10):1570–1577PubMedCrossRefGoogle Scholar
  4. American Academy of Pediatrics (1992) Committee on drugs. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics 89:1110–1115Google Scholar
  5. American Society of Anesthesiologists, Task Force on Sedation and Analgesia by Non-Anesthesiologists (2002) Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology 96:1004–1017Google Scholar
  6. Amthauer H, Furth C, Denecke T et al (2005) FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Pediatr 217:327–333CrossRefGoogle Scholar
  7. Andre N, Fabre A, Colavolpe C et al (2008) FDG PET and evaluation of posttherapeutic residual tumors in pediatric oncology: preliminary experience. J Pediatr Hematol Oncol 30(5):343–346PubMedCrossRefGoogle Scholar
  8. Arush MW, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 49:901–905PubMedCrossRefGoogle Scholar
  9. Bangerter M, Moog F, Buchmann I et al (1998) Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9:1117–1122PubMedCrossRefGoogle Scholar
  10. Barnewolt CE, Paltiel HJ, Lebowitz RL, Kirks DR (1997) Genitourinary system. In: Kirks DR (ed) Practical pediatric imaging: diagnostic radiology of infants and children, 3rd edn. Lippincott-Raven, Philadelphia, pp 1009–1170Google Scholar
  11. Barrington SF, Carr R (1995) Staging of Burkitt’s lymphoma and response to treatment monitored by PET scanning. Clin Oncol 7:334–335CrossRefGoogle Scholar
  12. Bar-Sever Z, Connolly LP, Treves ST et al (1997) Technetium-99m MIBI in the evaluation of children with Ewing’s sarcoma. J Nucl Med 38:13PGoogle Scholar
  13. Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET-CT in pediatric malignancies. Eur J Nucl Med Mol Imaging 34(5):630–637Google Scholar
  14. Beker DB, Berrak SG, Canpolat C et al (2008) False positivity of FDG-PET/CT in a child with Hodgkin disease. Pediatr Blood Canecr 50(4):881–883CrossRefGoogle Scholar
  15. Ben Arush MW, Israel O, Kedar Z et al (2001) Detection of isolated distant metastasis in soft tissue sarcoma by fluorodeoxyglucose positron emission tomography: case report. Pediatr Hematol Oncol 18(4):295–298Google Scholar
  16. Ben Arush MW, Bar Shalom R, Potovsky S et al (2006) Assessing the use of FDG-PET in the detection of regional and metastatic nodes in alveolar rhabdomyosarcoma of extremities. J Pediatr Hematol Oncol 28:440–445Google Scholar
  17. Benz MR, Tchekmedyian N, Eilber FC et al (2009) Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol 21:345–351PubMedCrossRefGoogle Scholar
  18. Bestic JM, Peterson JJ, Bancroft LW (2009) Use of FDG PET in staging, restaging, and assessment of therapy response in Ewing sarcoma. Radiographics 29(5):1487–1500PubMedCrossRefGoogle Scholar
  19. Beyer T, Antoch G, Muller S et al (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45(Suppl 1):25S–35SPubMedGoogle Scholar
  20. Binkovitz I, Henwood M, Caniano D et al (2008) Early detection of recurrent pediatric adrenal cortical carcinoma using FDG PET. Clin Nucl Med 33(3):186–188PubMedCrossRefGoogle Scholar
  21. Borgwardt L, Larsen HJ, Pedersen K, Hojgaard L (2003) Practical use and implementation of PET in children in a hospital PET center. Eur J Nucl Med Mol Imaging 30(10):1389–1397PubMedCrossRefGoogle Scholar
  22. Borgwardt L, Hojgaard L, Carstensen H et al (2005) Increased fluorine-18 2-fluoro-2-deoxy d-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037PubMedCrossRefGoogle Scholar
  23. Bousvaros A, Kirks DR, Grossman H (1986) Imaging of neuroblastoma: an overview. Pediatr Radiol 16:89–106PubMedCrossRefGoogle Scholar
  24. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176:289–296Google Scholar
  25. Briganti V, Sestini R, Orlando C et al (1997) Imaging of somatostatin receptors by indium-111-pentetreotide correlates with quantitative determination of somatostatin receptor type 2 gene expression in neuroblastoma tumor. Clin Cancer Res 3:2385–2391PubMedGoogle Scholar
  26. Brink I, Reinhardt MJ, Hoegerle S et al (2001) Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 42:591–595PubMedGoogle Scholar
  27. Brink I, Schaefer O, Walz M et al (2006) Fluorine-18 DOPA PET imaging of paraganglioma syndrome. Clin Nucl Med 31:39–41PubMedCrossRefGoogle Scholar
  28. Brisse H, Ollivier L, Edeline V et al (2004) Imaging of malignant tumors of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 34:595–605PubMedCrossRefGoogle Scholar
  29. Bruggers CS, Friedman HS, Fuller GN et al (1993) Comparison of serial PET and MRI scans in a pediatric patient with a brainstem glioma. Med Pediatr Oncol 21(4):301–306PubMedCrossRefGoogle Scholar
  30. Buchler T, Cervinek L, Belohlavek O et al (2005) Langerhans cell histiocytosis with central nervous system involvement: follow up by FDG PET during treatment with cladribine. Pediatr Blood Cancer 44:286–288PubMedCrossRefGoogle Scholar
  31. Bujenovic S, Mannting F, Chakrabarti R et al (2003) Artifactual 2-deoxy-2-[(18)F]fluoro-d-deoxyglucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imaging Biol 5:20–22PubMedCrossRefGoogle Scholar
  32. Caner B, Kitapel M, Unlu M et al (1992) Technetium-99m-MIBI uptake in benign and malignant bone lesions: a comparative study with technetium-99m-MDP. J Nucl Med 33:319–324PubMedGoogle Scholar
  33. Carr R, Barrington SF, Madan B et al (1998) Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 91:3340–3346PubMedGoogle Scholar
  34. Ceyssens S, Van Laere K, de Groot T et al (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neurolradiol 27:1432–1437Google Scholar
  35. Chawla M, Reddy R, Kumar R et al (2009) PET-CT in detection of meningeal metastasis in neuroblastoma. Pediatr Surg Int 25:211–215PubMedCrossRefGoogle Scholar
  36. Chawla SC, Federman N, Zhange D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40(5):681–686Google Scholar
  37. Chen YW, Huang MY, Chang CC et al (2007) FDG PET/CT findings of epitheloid sarcoma in pediatric patient. Clin Nucl Med 32(11):898–901PubMedCrossRefGoogle Scholar
  38. Choi SJ, Kim JS, Kim JH et al (2005) [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–659PubMedCrossRefGoogle Scholar
  39. Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography—clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33(3):228–237PubMedCrossRefGoogle Scholar
  40. Cohade C, Osman M, Pannu HK et al (2003) Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 44:170–176PubMedGoogle Scholar
  41. Cohen MD (1992) Imaging of children with cancer. Mosby Yearbook, St. LouisGoogle Scholar
  42. Connolly LP, Laor T, Jaramillo D et al (1996) Prediction of chemotherapeutic response of osteosarcoma with quantitative thallium-201 scintigraphy and magnetic resonance imaging. Radiology 201(P):349Google Scholar
  43. Cremerius U, Fabry U, Neuerburg J et al (1998) Positron emission tomography with 18-F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun 19:1055–1063PubMedCrossRefGoogle Scholar
  44. de Wit M, Bumann D, Beyer W et al (1997) Whole-body positron emission tomography (PET) for diagnosis of residual mass in patients with lymphoma. Ann Oncol 8(Suppl 1):57–60PubMedCrossRefGoogle Scholar
  45. Delbeke D (1999) Oncological applications of FDG PET Imaging: colorectal cancer, lymphoma, and melanoma. J Nucl Med 40:591–603PubMedGoogle Scholar
  46. Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET-CT 1.0. J Nucl Med 47:885–895PubMedGoogle Scholar
  47. Depas G, De Barsy C, Jerusalem G et al (2005) 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38PubMedCrossRefGoogle Scholar
  48. Di Chiro G, Oldfield E, Wright DC et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197PubMedGoogle Scholar
  49. Dizendorf EV, Treyer V, von Schulthess GK, Hany TF (2002) Application of oral contrast media in coregistered positron emission tomography-CT. AJR Am J Roentgenol 179(12):477–481PubMedGoogle Scholar
  50. Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796PubMedGoogle Scholar
  51. Fahey FH (2009) Dosimetry of pediatric PET/CT. J Nucl Med 50(9):1483–1491PubMedCrossRefGoogle Scholar
  52. Fahey FH, Palmer MR, Strauss KJ et al (2007) Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 243:96–104PubMedCrossRefGoogle Scholar
  53. Federman N, Feig SA (2007) PET/CT in evaluating pediatric malignancies: a clinician’s perspective. J Nucl Med 48(12):1920–1922PubMedCrossRefGoogle Scholar
  54. Feldman F, Vanheertum R, Saxena C (2006) 18Fluorodeoxyglucose positron emission tomography evaluation of benign versus malignant osteochondromas: preliminary observations. J Comput Assist Tomogr 30:858–864PubMedCrossRefGoogle Scholar
  55. Figarola MS, McQuiston SA, Wilson F et al (2005) Recurrent hepatoblastoma with localization by PET-CT. Pediatr Radiol 35:1254–1258PubMedCrossRefGoogle Scholar
  56. Filmont JE, Yap CS, Ko F et al (2004) Conventional imaging and 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography for predicting the clinical outcome of patients with previously treated Hodgkin’s disease. Mol Imaging Biol 6:47–54PubMedCrossRefGoogle Scholar
  57. Floeth FW, Pauleit D, Wittsack HJ et al (2005) Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-l-tyrosine and magnetic resonance spectroscopy. J Neurosurg 102:318–327PubMedCrossRefGoogle Scholar
  58. Francavilla TL, Miletich RS, Di Chiro G et al (1989) Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery 24:1–5PubMedCrossRefGoogle Scholar
  59. Franzius C, Schober O (2003) Assessment of therapy response by FDG PET in pediatric patients. Q J Nucl Med 47:41–45PubMedGoogle Scholar
  60. Franzius C, Sciuk J, Brinkschmidt C et al (2000a) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881PubMedCrossRefGoogle Scholar
  61. Franzius C, Sciuk J, Daldrup-Link HE et al (2000b) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311PubMedCrossRefGoogle Scholar
  62. Franzius C, Juergens KU, Vomoor J (2005) PET-CT with diagnostic CT in the evaluation of childhood sarcoma. AJR Am J Roentgenol 184:1293–1304Google Scholar
  63. Franzius C, Hermann K, Weckesser M et al (2006) Whole-body PET-CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic system: feasibility study and comparison with 123I-MIBG SPECT-CT. J Nucl Med 47:1635–1642PubMedGoogle Scholar
  64. Freudenberg LS, Jentzen W, Marlowe RJ et al (2007) 124-Iodine positron emission tomography/computed tomography dosimetry in pediatric patients with differentiated thyroid cancer. Exp Clin Endocrinol Diabetes 115(10):690–693PubMedCrossRefGoogle Scholar
  65. Frouge C, Vanel D, Coffre C et al (1988) The role of magnetic resonance imaging in the evaluation of Ewing sarcoma—a report of 27 cases. Skeletal Radiol 17:387–392PubMedCrossRefGoogle Scholar
  66. Furth C, Denecke T, Steffen I et al (2006) Correlative imaging strategies implementing CT, MR, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol 28:501–512PubMedCrossRefGoogle Scholar
  67. Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27(26):4365–4391CrossRefGoogle Scholar
  68. Garcia CA, Van Nostrand D, Atkins F et al (2006) Reduction of brown fat 2-deoxy-2-[F-18]fluoro-d-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 8:24–29PubMedCrossRefGoogle Scholar
  69. Gelfand MJ (2009) Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients. Pediatr Radiol 39(Suppl 1):S46–S56PubMedCrossRefGoogle Scholar
  70. Gelfand MJ, Lemen LC (2007) PET/Ct and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med 37(5):391–398PubMedCrossRefGoogle Scholar
  71. Gelfand MJ, O’Hara SM, Curtwright LA et al (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990PubMedCrossRefGoogle Scholar
  72. Glantz MJ, Hoffman JM, Coleman RE et al (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomograph. Ann Neurol 29:347–355PubMedCrossRefGoogle Scholar
  73. Goethals I, De Vriendt C, Hoste P et al (2009) Normal uptake of F-18 FDG in the testis as assessed by PET/CT in a pediatric study population. Ann Nucl Med 23(9):817–820Google Scholar
  74. Goo HW (2010) Whole body MRI of neuroblastoma. Eur J Radiol 75(3):306–314Google Scholar
  75. Goodin GS, Shulkin BL, Kaufman RA et al (2006) PET-CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. AJR Am J Roentgenol 187:1146CrossRefGoogle Scholar
  76. Gordon I (1998) Issues surrounding preparation, information, and handling the child and parent in nuclear medicine. J Nucl Med 39:490–494PubMedGoogle Scholar
  77. Gurney JG, Severson RK, Davis S, Robison LL (1995) Incidence of cancer in children in the United States. Cancer 75:2186–2195PubMedCrossRefGoogle Scholar
  78. Gururangan S, Hwang E, Herndon JE 2nd et al (2004) [18F]fluorodeoyglucose positron emission tomography in patients with medulloblastoma. Neurosurgery 55:1280–1288PubMedCrossRefGoogle Scholar
  79. Gyorke T, Zajic T, Lange A et al (2006) Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumors. Nucl Med Commun 27:17–24PubMedCrossRefGoogle Scholar
  80. Hany TF, Gharehpapagh E, Kamel EM et al (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398PubMedCrossRefGoogle Scholar
  81. Hawkins DS, Rajendran JG, Conrad EU 3rd et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94(12):3277–3284PubMedCrossRefGoogle Scholar
  82. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834PubMedCrossRefGoogle Scholar
  83. Hernandez-Pampaloni M, Takalkar A, Yu JQ et al (2006) F-18 FDG-PET imaging and correlation with CT in staging and follow-up of pediatric lymphomas. Pediatr Radiol 36:524–531PubMedCrossRefGoogle Scholar
  84. Hobbs RF, Wahl RL, Javadi MS et al (2009) 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 50(11):1844–1847PubMedCrossRefGoogle Scholar
  85. Hoffman JM, Hanson MW, Friedman HS et al (1992) FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 16:62–68PubMedCrossRefGoogle Scholar
  86. Hoh CK, Glaspy J, Rosen P et al (1997) Whole-body FDG PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med 38:343–348PubMedGoogle Scholar
  87. Hollinger EF, Alibazoglu H, Ali A et al (1998) Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 23:93–98PubMedCrossRefGoogle Scholar
  88. Holscher HC, Bloem JL, Vanel D et al (1992) Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology 182:839–844PubMedGoogle Scholar
  89. Holthof VA, Herholz K, Berthold F et al (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72(4):1394–1403Google Scholar
  90. Howman-Giles R, Stevens M, Bergin M (1982) Role of gallium-67 in management of pediatric solid tumors. Aust Pediatric J 18:120–125Google Scholar
  91. Huang TL, Liu RS, Chen TH et al (2006) Comparison between F-18-FDG positron emission tomography and histology for the assessment of tumor necrosis rates in primary osteosarcoma. J Chin Med Assoc 69:372–376PubMedCrossRefGoogle Scholar
  92. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol 34(3):190–198Google Scholar
  93. Jadvar H, Fischman AJ (1999) Evaluation of rare tumors with [F-18]fluorodeoxyglucose positron emission tomography. Clin Positron Imaging 2:153–158PubMedCrossRefGoogle Scholar
  94. Jadvar H, Alavi A, Mavi A, Shulkin BL (2005) PET in pediatric diseases. Radiol Clin N Am 43:135–152PubMedCrossRefGoogle Scholar
  95. Janus T, Kim E, Tilbury R et al (1993) Use of [18F] fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 33:540–548PubMedCrossRefGoogle Scholar
  96. Jaramillo D, Laor T, Gebhardt M (1996) Pediatric musculoskeletal neoplasms. Evaluation with MR imaging. MRI Clin N Am 4:1–22Google Scholar
  97. Jerusalem G, Warland V, Najjar F et al (1999) Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun 20:13–20PubMedCrossRefGoogle Scholar
  98. Jones SC, Alavi A, Christman D et al (1982) The radiation dosimetry of 2-[18F]fluoro-2-deoxy-d-glucose in man. J Nucl Med 23:613–617PubMedGoogle Scholar
  99. Juhasz C, Chugani DC, Muzik O et al (2006) In vivo uptake and metabolism of alpha-[11C]methyl-l-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345–357PubMedCrossRefGoogle Scholar
  100. Kabickova E, Sumerauer D, Cumlivska E et al (2006) Comparison of (18)F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging 33:1025–1031PubMedCrossRefGoogle Scholar
  101. Kaste SC (2004) Issues specific to implementing PET-CT for pediatric oncology: what we have learned along the way. Pediatr Radiol 34(3):205–213PubMedCrossRefGoogle Scholar
  102. Kaste SC, Howard SC, McCarville EB et al (2005) 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol 35:141–154PubMedCrossRefGoogle Scholar
  103. Kaste SC, Rodriguez-Galindo C, McCarville ME et al (2007) PET-CT in pediatric Langehans cell histiocytosis. Pediatr Radiol 37(7):615–622PubMedCrossRefGoogle Scholar
  104. Keresztes K, Lengyel Z, Devenyi K et al (2004) Mediastinal bulky tumor in Hodgkin’s disease and prognostic value of positron emission tomograhy in the evaluation of post treatment residual masses. Acta Haematol 112:194–199PubMedCrossRefGoogle Scholar
  105. Kim S, Salamon N, Jackson HA et al (2010) PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 40(1):82–96PubMedCrossRefGoogle Scholar
  106. Kinoshita H, Shimotake T, Furukawa T et al (2005) Mucoepidermal carcinoma of the lung detected by positron emission tomography in a 5-year-old girl. J Pediatr Surg 40:E1–E3PubMedCrossRefGoogle Scholar
  107. Kleihues P, Burger P, Scheithauer B (1993) The new WHO classification of brain tumors. Brain Pathol 3:255–268PubMedCrossRefGoogle Scholar
  108. Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36(1):23–36PubMedCrossRefGoogle Scholar
  109. Kneisl JS, Patt JC, Johnson JC et al (2006) Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin Orthop Relat Res 450:101–104PubMedCrossRefGoogle Scholar
  110. Korholz D, Kluge R, Wickmann L et al (2003) Importance of F18-fluorodeoxy-d-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence—consequences for the GPOH-HD 2003 protocol. Onkologie 26:489–493PubMedCrossRefGoogle Scholar
  111. Kostakoglu L, Leonard JP, Coleman M et al (2000) Comparison of FDG-PET and Ga-67 SPECT in the staging of lymphoma. J Nucl Med 41(Suppl 5):118PGoogle Scholar
  112. Krasin MJ, Hudson MM, Kaste SC (2004) Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol 34:214–221PubMedCrossRefGoogle Scholar
  113. Kumar J, Seith A, Kumar A et al (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38(9):953–962PubMedCrossRefGoogle Scholar
  114. Lapela M, Leskinen S, Minn HR et al (1995) Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood 86:3522–3527PubMedGoogle Scholar
  115. Lavely WC, Delbeke D, Greer JP et al (2003) FDG PET in the follow-up of management of patients with newly diagnosed Hodgkin and non-Hodgkin lymphoma after first-line chemotherapy. Int J Radiat Oncol Biol Phys 57:307–315PubMedCrossRefGoogle Scholar
  116. Lawrence JA, Babyn PS, Chan HS et al (1993) Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 189:43–47PubMedGoogle Scholar
  117. Lee EY, Vargus SO, Sawicki GS et al (2007) Mucoepiodermoid carcinoma of bronchus in a pediatric patient: (18)F-FDG PET findings. Pediatr Radiol 37(12):1278–1282PubMedCrossRefGoogle Scholar
  118. Lemmi MA, Fletcher BD, Marina NM et al (1990) Use of MR imaging to assess results of chemotherapy for Ewing sarcoma. AJR Am J Roentgenol 155:343–346PubMedGoogle Scholar
  119. Lenzo NP, Shulkin B, Castle VP, Hutchinson RJ (2000) FDG PET in childhood soft tissue sarcoma. J Nucl Med 41(Suppl 5):96PGoogle Scholar
  120. Leskinen-Kallio S, Ruotsalainen U, Nagren K et al (1991) Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 32:1211–1218PubMedGoogle Scholar
  121. Levine JM, Weiner M, Kelly KM (2006) Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol 28:711–714PubMedCrossRefGoogle Scholar
  122. Lilja A, Lundqvist H, Olsson Y et al (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesion. Acta Radiol 38:121–128CrossRefGoogle Scholar
  123. Lim R, Fahey FH, Drubach LA et al (2007) Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 27(3):277–282PubMedCrossRefGoogle Scholar
  124. Lin J, Leung WT (1995) Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 22:553–555PubMedCrossRefGoogle Scholar
  125. Mackie GC, Shulkin BL, Ribeiro RC et al (2006) Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab 91:2665–2671PubMedCrossRefGoogle Scholar
  126. MacVicar AD, Olliff JFC, Pringle J et al (1992) Ewing sarcoma: MR imaging of chemotherapy-induced changes with histologic correlation. Radiology 184:859–864PubMedGoogle Scholar
  127. Mandell GA, Cooper JA, Majd M et al (1997) Procedure guidelines for pediatric sedation in nuclear medicine. J Nucl Med 38:1640–1643PubMedGoogle Scholar
  128. Maria B, Drane WB, Quisling RJ, Hoang KB (1997) Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. J Child Neurol 12:341–348PubMedCrossRefGoogle Scholar
  129. McCarville MB (2009) PET-CT imaging in pediatric oncology. Cancer Imaging 9:35–43PubMedCrossRefGoogle Scholar
  130. McDonald DJ (1994) Limb salvage surgery for sarcomas of the extremities. AJR 163:509–513PubMedGoogle Scholar
  131. McQuattie S (2008) Pediatric PET/CT imaging: tips and techniques. J Nucl Med Technol 36(4):171–180PubMedCrossRefGoogle Scholar
  132. Meany HJ, Gidvani VK, Minniti CP (2007) Utility of PET scans to predict disease relapse in pediatric patients with Hodgkin lymphoma. Pediatr Blood Cancer 48(4):399–402Google Scholar
  133. Menendez LR, Fideler BM, Mirra J (1993) Thallium-201 scanning for the evaluation of osteosarcoma and soft tissue sarcoma. J Bone Joint Surg 75:526–531PubMedGoogle Scholar
  134. Miller E, Metser U, Avrahami G et al (2006) Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 30:689–694PubMedCrossRefGoogle Scholar
  135. Mineura K, Sasajima T, Kowada M et al (1997) Indications for differential diagnosis of nontumor central nervous system diseases from tumors. A positron emission tomography study. J Neuroimaging 7:8–15PubMedGoogle Scholar
  136. Minotti AJ, Shah L, Keller K (2004) Positron emission tomography/computed tomography fusion imaging in brown adipose tissue. Clin Nucl Med 29(1):5–11PubMedCrossRefGoogle Scholar
  137. Misch D, Steffen IG, Schonberger S et al (2008) Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumor. Eur J Nucl Med Mol Imaging 35:1642–1650PubMedCrossRefGoogle Scholar
  138. Mody RJ, Pohlen JA, Malde S et al (2006) FDG PET for the study of primary hepatic malignancies in children. Pediatr Blood Cancer 47:51–55PubMedCrossRefGoogle Scholar
  139. Molloy PT, Belasco J, Ngo K, Alavi A (1999a) The role of FDG PET imaging in the clinical management of pediatric brain tumors. J Nucl Med 40:129PGoogle Scholar
  140. Molloy PT, Defeo R, Hunter J et al (1999b) Excellent correlation of FDG PET imaging with clinical outcome in patients with neurofibromatosis type I and low grade astrocytomas. J Nucl Med 40:129PGoogle Scholar
  141. Montravers F, McNamara D, Landman-Parker J et al (2002) [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29:1155–1165PubMedCrossRefGoogle Scholar
  142. Moody R, Shulkin B, Yanik G et al (2001) PET FDG Imaging in Pediatric Lymphomas. J Nucl Med 42(Suppl 5):39PGoogle Scholar
  143. Moog F, Bangerter M, Diederichs CG et al (1997) Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) PET in nodal staging. Radiology 203:795–800PubMedGoogle Scholar
  144. Moog F, Bangerter M, Kotzerke J et al (1998a) 18-F-fluorodeoxyglucose positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16:603–609PubMedGoogle Scholar
  145. Moog F, Bangerter M, Diederichs CG et al (1998b) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481PubMedGoogle Scholar
  146. Moon L, McHugh K (2005) Advances in pediatric tumor imaging. Arch Dis Child 90:608–611PubMedCrossRefGoogle Scholar
  147. Mosskin M, von Holst H, Bergstrom M et al (1987) Positron emission tomography with 11C-methionine and computed tomography of intracranial tumors compared with histopathologic examination of multiple biopsies. Acta Radiol 28:673–681PubMedCrossRefGoogle Scholar
  148. Murphy JJ, Tawfeeq M, Chang N et al (2008) Early experience with PET/CT scan in the evaluation of pediatric abdominal neoplasms. J Pediatr Surg 43(2):2186–2192PubMedCrossRefGoogle Scholar
  149. Nadel HR, Rossleigh MA (1995) Tumor imaging. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, New York, pp 496–527Google Scholar
  150. Nakamoto Y, Chin RB, Kraitchman DL et al (2003) Effects of nonionic intravenous contrast agents at PET/CT imaging: phantom and canine studies. Radiology 227:817–824PubMedCrossRefGoogle Scholar
  151. Nanni C, Rubello D, Castelluci P et al (2006) 18F-FDG PET-CT fusion imaging in pediatric solid extracranial tumors. Biomed Pharmacother 60:593–606PubMedCrossRefGoogle Scholar
  152. Nehmeh SA, Erdi YE, Kalaigian H et al (2003) Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. J Nucl Med 44(12):1940–1944PubMedGoogle Scholar
  153. Newman JS, Francis IR, Kaminski MS, Wahl RL (1994) Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-d-glucose: correlation with CT. Radiology 190:111–116PubMedGoogle Scholar
  154. O’Connor MI, Pritchard DJ (1991) Ewing’s sarcoma. Prognostic factors, disease control, and the reemerging role of surgical treatment. Clin Orthop 262:78–87PubMedGoogle Scholar
  155. Ohtomo K, Terui S, Yokoyama R et al (1996) Thallium-201 scintigraphy to assess effect of chemotherapy to osteosarcoma. J Nucl Med 37:1444–1448PubMedGoogle Scholar
  156. Okada J, Yoshikawa K, Imazeki K et al (1991) The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 32:686–691PubMedGoogle Scholar
  157. Okada J, Yoshikawa K, Itami M et al (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33:325–329PubMedGoogle Scholar
  158. Ott RJ, Tait D, Flower MA et al (1992) Treatment planning for 131I-mIBG radiotherapy of neural crest tumors using 124I-mIBG positron emission tomography. Br J Radiol 65:787–791PubMedCrossRefGoogle Scholar
  159. O’Tuama LA, Phillips PC, Strauss LC et al (1990) Two-phase [11C]l-methionine PET in childhood brain tumors. Pediatr Neurology 6:163–170CrossRefGoogle Scholar
  160. O’Tuama L, Janicek M, Barnes P et al (1991) Tl-201/Tc-99m HMPAO SPECT imaging of treated childhood brain tumors. Pediatr Neurol 7:249–257PubMedCrossRefGoogle Scholar
  161. O’Tuama L, Treves ST, Larar G et al (1993) Tl-201 versus Tc-99m MIBI SPECT in evaluation of childhood brain tumors. J Nucl Med 34:1045–1051PubMedGoogle Scholar
  162. Ovadia D, Metser U, Lievshitz G et al (2007) Back pain in adolescents: assessments with integrated 18F-fluoride positron emission tomography-computed tomography. J Pediatr Orthop 27:90–93PubMedCrossRefGoogle Scholar
  163. Pacak K, Ilias I, Chen CC et al (2004) The role of 18F-fluorodeoxyglucose positron emission tomography and In-111-diethylenetriaminepentaacetate-d-Phe-pentetreotide scintigraphy in the localization of ectopic adrenocorticotropin-secreting tumors causing Cushing’s syndrome. J Clin Endocrinol Metab 89:2214–2221PubMedCrossRefGoogle Scholar
  164. Patel PM, Alibazoglu H, Ali A et al (1996) Normal thymic uptake of FDG on PET imaging. Clin Nucl Med 21:772–775PubMedCrossRefGoogle Scholar
  165. Patronas NJ, Di Chiro G, Kufta C et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822PubMedCrossRefGoogle Scholar
  166. Paul R (1987) Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med 28:288–292PubMedGoogle Scholar
  167. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687PubMedCrossRefGoogle Scholar
  168. Peng F, Rabkin G, Muzik O (2006) Use of 2-deoxy-[F-18]-fluoro-d-glucose positron emission tomography to monitor therapeutic response by rhabdomyosarcoma in children: report of a retrospective case. Clin Nucl Med 31:394–397PubMedCrossRefGoogle Scholar
  169. Philip I, Shun A, McCowage G et al (2005) Positron emission tomography in recurrent hepatoblastoma. Pediatr Surg Int 21:341–345PubMedCrossRefGoogle Scholar
  170. Pirotte B, Goldman S, Salzberg S et al (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38(3):146–155PubMedCrossRefGoogle Scholar
  171. Pirotte B, Levivier M, Morelli D et al (2005) Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 21:294–300PubMedCrossRefGoogle Scholar
  172. Pirotte B, Goldman S, Dewitte O et al (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104:238–253PubMedCrossRefGoogle Scholar
  173. Pirotte B, Acerbi F, Lubeansu A et al (2007) PET imaging in surgical management of pediatric brain tumors. Childs Nerv Syst 23(7):739–751PubMedCrossRefGoogle Scholar
  174. Ramanna L, Waxman A, Binney G et al (1990) Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and technetium-99m MDP in the evaluation of chemotherapeutic response. J Nucl Med 31:567–572PubMedGoogle Scholar
  175. Rhodes MM, Delbeke D, Whitlock JA et al (2006) Utility of FDG PET-CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol 28:300–306PubMedCrossRefGoogle Scholar
  176. Riad R, Omar W, Kotb M et al (2010) Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging 37(2):319–329Google Scholar
  177. Robbins E (2008) Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer 51(4):453–457PubMedCrossRefGoogle Scholar
  178. Robertson R, Ball WJ, Barnes P (1997) Skull and brain. In: Kirks D (ed) Practical pediatric imaging. Diagnostic radiology of Infants and children. Lippincott-Raven, Philadelphia, pp 65–200Google Scholar
  179. Robison L (1997) General principles of the epidemiology of childhood cancer. In: Pizzo P, Poplack D (eds) Principles and practice of pediatric oncology. Lippincott-Raven, Philadelphia, pp 1–10Google Scholar
  180. Rodriguez M, Rehn S, Ahlstrom H et al (1995) Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med 36:1790–1796PubMedGoogle Scholar
  181. Rodriguez-Galindo C, Figueiredo BC, Zambetti GP et al (2005) Biology, clinical characteristics, and management of adrenocortical tumors in children. Pediatr Blood Cancer 45(3):265–273PubMedCrossRefGoogle Scholar
  182. Roebuck DJ, Perilongo G (2006) Hepatoblastoma: an oncological review. Pediatr Radiol 36(3):183–186PubMedCrossRefGoogle Scholar
  183. Rollins N, Lowry P, Shapiro K (1995) Comparison of gadolinium-enhanced MR and thallium-201 single photon emission computed tomography in pediatric brain tumors. Pediatr Neurosurg 22:8–14PubMedCrossRefGoogle Scholar
  184. Romer W, Hanauske AR, Ziegler S et al (1998) Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 91:4464–4471PubMedGoogle Scholar
  185. Rosen G, Loren GJ, Brien EW et al (1993) Serial thallium-201 scintigraphy in osteosarcoma. Correlation with tumor necrosis after preoperative chemotherapy. Clin Orthop 293:302–306PubMedGoogle Scholar
  186. Rossleigh MA, Murray IPC, Mackey DWJ (1990) Pediatric solid tumors: evaluation by gallium-67 SPECT studies. J Nucl Med 31:161–172Google Scholar
  187. Rozental JM, Levine RL, Nickles RJ (1991) Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J Neuro-Oncol 10:75–83CrossRefGoogle Scholar
  188. Ruotsalainen U, Suhonen-Povli H, Eronen E et al (1996) Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med 37:387–393PubMedGoogle Scholar
  189. Sasi OA, Sathiapalan R, Rifai A et al (2005) Colonic neuroendocrine carcinoma in a child. Pediatr Radiol 35:339–343PubMedCrossRefGoogle Scholar
  190. Schelbert H, Hoh CK, Royal HD et al (1998) Procedure guideline for tumor imaging using Fluorine-18-FDG. J Nucl Med 39:1302–1305PubMedGoogle Scholar
  191. Schifter T, Hoffman JM, Hanson MW et al (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509–561PubMedCrossRefGoogle Scholar
  192. Schuetze SM, Rubin BP, Vernon C et al (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348PubMedCrossRefGoogle Scholar
  193. Segall GM (2001) FDG PET imaging in patients with lymphoma: a clinical perspective. J Nucl Med 42(4):609–610PubMedGoogle Scholar
  194. Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29(5):1467–1486PubMedCrossRefGoogle Scholar
  195. Sharp SE, Shulkin BL, Gelfand MJ et al (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50(8):1237–1243PubMedCrossRefGoogle Scholar
  196. Shore RM (2008) Positron emission tomography/computed tomography (PET/CT) in children. Pediatr Ann 37:404–412PubMedCrossRefGoogle Scholar
  197. Shulkin BL (1997) PET applications in Pediatrics. Q J Nucl Med 41:281–291PubMedGoogle Scholar
  198. Shulkin BL (2004) PET imaging in pediatric oncology. Pediatr Radiol 34:199–204PubMedCrossRefGoogle Scholar
  199. Shulkin BL, Mitchell DS, Ungar DR et al (1995) Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-d-glucose PET studies. Radiology 194:495–500PubMedGoogle Scholar
  200. Shulkin BL, Hutchinson RJ, Castle VP et al (1996a) Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 199:743–750PubMedGoogle Scholar
  201. Shulkin BL, Wieland DM, Baro ME et al (1996b) PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med 37:16–21PubMedGoogle Scholar
  202. Shulkin BL, Chang E, Strouse PJ et al (1997) PET FDG studies of Wilms tumors. J Pediatr Hem/Onc 19:334–338Google Scholar
  203. Shulkin BL, Wieland DM, Castle VP et al (1999) Carbon-11 epinephrine PET imaging of neuroblastoma. J Nucl Med 40:129PGoogle Scholar
  204. Stumpe KD, Urbinelli M, Steinert HC et al (1998) Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 25:721–728PubMedCrossRefGoogle Scholar
  205. Sty JR, Kun LE, Starshak RJ (1985) Pediatric applications in nuclear oncology. Semin Nucl Med 15:171–200PubMedCrossRefGoogle Scholar
  206. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL (1998) Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16:173–180PubMedGoogle Scholar
  207. Swift P (2002) Novel techniques in the delivery of radiation in pediatric oncology. Pediatr Clin N Am 49:1107–1129CrossRefGoogle Scholar
  208. Taggart DR, Han MM, Quach A et al (2009) Comparison of iodine-123 metaiodobenzylguainidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 27(32):5343–5349PubMedCrossRefGoogle Scholar
  209. Tateishi U, Hosono A, Makimoto A et al (2007) Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging pediatric sarcomas. J Pediatr Hematol Oncol 29(9):608–612PubMedCrossRefGoogle Scholar
  210. Tatsumi M, Kitayama H, Sugahara H et al (2001) Whole-body hybrid PET with 18F-FDG in the staging of non-Hodgkin’s lymphoma. J Nucl Med 42(4):601–608PubMedGoogle Scholar
  211. Tatsumi M, Engles JM, Ishimori T et al (2004) Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 45:1189–1193PubMedGoogle Scholar
  212. Tatsumi M, Cohade C, Nakamoto Y et al (2005) Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience. Radiology 237:1038–1045PubMedCrossRefGoogle Scholar
  213. Tatsumi M, Miller JH, Wahl RL (2007) 18F-FDG PET in evaluating non-CNS pediatric malignancies. J Nucl Med 48(12):1923–1931PubMedCrossRefGoogle Scholar
  214. Torii K, Tsuyuguchi N, Kawabe J et al (2005) Correlation of amino-acid uptake using methionine PET and histological classification in various gliomas. Ann Nucl Med 19:677–683PubMedCrossRefGoogle Scholar
  215. Townsend DW, Beyer T (2002) A combined PET-CT scanner: the path to true image fusion. Br J Radiol 75(Suppl):S24–S30PubMedGoogle Scholar
  216. Treves ST (1995) Introduction. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, New York, pp 1–11Google Scholar
  217. Triche TJ (1993) Pathology of pediatric malignancies. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 2nd edn. JB Lippincott, Philadelphia, pp 115–152Google Scholar
  218. Truong MT, Erasmus JJ, Munden RF et al (2004) Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET-CT. AJR Am J Roentgenol 183:1127–1132PubMedGoogle Scholar
  219. Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluordeoxyglucose and 11C-methionine positron emission tomography. Cancer 95(6):1376–1386PubMedCrossRefGoogle Scholar
  220. Vaidyanathan G, Affleck DJ, Zalutsky MR (1995) Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 36:644–650PubMedGoogle Scholar
  221. Valk PE, Budinger TF, Levin VA et al (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838PubMedCrossRefGoogle Scholar
  222. Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51PubMedCrossRefGoogle Scholar
  223. Visvikis D, Costa DC, Croasdale I et al (2003) CT-based attenuation correction in the calculation of semi-quantitative indices of [18F]FDG uptake in PET. Eur J Nucl Med Mol Imaging 30(3):344–353PubMedCrossRefGoogle Scholar
  224. Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25(34):5435–5441PubMedCrossRefGoogle Scholar
  225. Von Falck C, Rosenthal H, Gratz KF et al (2007a) Nonossifying fibroma can mimic residual lymphoma in FDG PET: additional value of combined PET/CT. Clin Nucl Med 32:640–642CrossRefGoogle Scholar
  226. Von Falck C, Maecker B, Schirg E et al (2007b) Post transplant lymphoproliferative disease in pediatric solid organ transplant patients: a possible role for [18F]-FDG PET(/CT) in initial staging and therapy monitoring. Eur J Radiol 63:427–435CrossRefGoogle Scholar
  227. Wang SX, Boethus J, Ericson K (2006) FDG-PET on irradiated brain tumor: ten years summary. Acta Radiol 47:85–90PubMedCrossRefGoogle Scholar
  228. Weckesser M, Langen KJ, Rickert CH et al (2005) O-(2-[18F]fluorethyl)-l-tyrosine PET in the clinical evaluation of primary brain tumors. Eur J Nucl Med Mol Imaging 32:422–429PubMedCrossRefGoogle Scholar
  229. Wegner EA, Barrington SF, Kingston JE et al (2005) The impact of PET scanning on management of pediatric oncology patients. Eur J Nucl Med Mol Imaging 32:23–30PubMedCrossRefGoogle Scholar
  230. Weinblatt ME, Zanzi I, Belakhlef A et al (1997) False-positive FDG-PET imaging of the thymus of a child with Hodgkin’s disease. J Nucl Med 38:888–890PubMedGoogle Scholar
  231. Williams G, Fahey FH, Treves ST, Kocak M et al (2008) Exploratory evaluation of two-dimensional and three-dimensional methods of FDG PET quantification in pediatric anaplastic astrocytoma: a report from the pediatric brain tumor consortium (PBTC). Eur J Nucl Med Mol Imaging 35(9):1651–1658PubMedCrossRefGoogle Scholar
  232. Yang SL, Alderson PO, Kaizer HA, Wagner HA (1979) Serial Ga-67 citrate imaging in children with neoplastic disease: concise communication. J Nucl Med 20:210–214Google Scholar
  233. Yeung HW, Sanches A, Squire OD et al (2002) Standardized uptake value (SUV) in pediatric patients: an investigation to determine the optimum measurement parameter. Eur J Nucl Med Mol Imaging 29(1):61–66PubMedCrossRefGoogle Scholar
  234. Yeung HW, Grewal RK, Gonen M et al (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 44(11):1789–1796PubMedGoogle Scholar
  235. Yeung HW, Schoder H, Smith A et al (2005) Clinical value of combined positron emission tomography/computed tomography imaging in the interpretation of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography studies in cancer patients. Mol Imaging Biol 7:229–235PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hossein Jadvar
    • 1
    • 4
  • Frederic H. Fahey
    • 2
  • Barry L. Shulkin
    • 3
  1. 1.Division of Nuclear Medicine, Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of Nuclear Medicine, Harvard Medical SchoolChildren’s Hospital BostonBostonUSA
  3. 3.Division of Diagnostic ImagingSt. Jude’s Children’s Research HospitalMemphisUSA
  4. 4.Division of Nuclear Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations