Future Developments for MSCT

  • Patrik Rogalla
Part of the Medical Radiology book series (MEDRAD)


Development and engineering are continually progressing and it would not be the first time in the evolution of computed tomography that some believe we have reached the zenith. Radiologists see technical improvements year after year Chen et al. (Med Phys 38(2):584–588, 2011), sometimes even quantum leaps and breakthroughs in all fields including data acquisition, image processing and post-processing Liu et al. (Radiology 253(1):98–105, 2009). Hounsfield’s CT prototype featured a rotation time of about 300 s with a maximum image matrix of 80 × 80 pixels Hounsfield (Br J Radiol 68(815):H166–H172, 1995). In comparison, today’s 320-slice scanner delivers rotation times of 350 ms and an image matrix of 512 × 512 pixels Rogalla et al. (Radiol Clin North Am 47(1):1–11, 2009). The pace is breathtaking and technological advances appear limitless if there was not radiation exposure that sets clear boundaries to uncontrolled expansion or unrestrained utilisation of CT in humans. However, priorities regarding the direction of development are laid out clearly: more diagnostic information with less radiation in a shorter scanning time and higher resolution. We may look into a crystal ball in an attempt to predict the future, but let us rather take a step-wise approach to illustrate where technological improvements are clinically desired and where short- and long-term advances can be expected.


Improve Image Quality Radiation Dose Reduction Diagnostic Image Quality Metal Artefact Reduction Helical Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691. doi: 10.1148/rg.246045065, 24/6/1679[pii]Google Scholar
  2. Bronnikov AV (2002) Theory of quantitative phase-contrast computed tomography. J Opt Soc Am A Opt Image Sci Vis 19(3):472–480PubMedCrossRefGoogle Scholar
  3. Chen GH, Zambelli J, Li K, Bevins N, Qi Z (2011) Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography. Med Phys 38(2):584–588PubMedCrossRefGoogle Scholar
  4. Donath T, Pfeiffer F, Bunk O et al (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 45(7):445–452. doi: 10.1097/RLI.0b013e3181e21866 PubMedGoogle Scholar
  5. Enzweiler CN, Becker CR, Bruning R et al (2004) Value of electron beam tomography (EBT). Rofo 176(11):1566–1575. doi: 10.1055/s-2004-813666 PubMedCrossRefGoogle Scholar
  6. Hounsfield GN (1995) Computerized transverse axial scanning (tomography): part I description of system. 1973. Br J Radiol 68(815):H166–H172PubMedGoogle Scholar
  7. Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164(2):576–577PubMedGoogle Scholar
  8. Kyriakou Y, Meyer E, Prell D, Kachelriess M (2010) Empirical beam hardening correction (EBHC) for CT. Med Phys 37(10):5179–5187PubMedCrossRefGoogle Scholar
  9. Liu X, Primak AN, Krier JD, Yu L, Lerman LO, McCollough CH (2009) Renal perfusion and hemodynamics: accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction. Radiology 253(1):98–105. doi: 10.1148/radiol.2531081677, 253/1/98[pii]Google Scholar
  10. Mazin SR, Star-Lack J, Bennett NR, Pelc NJ (2007) Inverse-geometry volumetric CT system with multiple detector arrays for wide field-of-view imaging. Med Phys 34(6):2133–2142PubMedCrossRefGoogle Scholar
  11. Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2010) Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37(10):5482–5493PubMedCrossRefGoogle Scholar
  12. Mieville FA, Gudinchet F, Brunelle F, Bochud FO, Verdun FR (2012) Iterative reconstruction methods in two different MDCT scanners: physical metrics and 4-alternative forced-choice detectability experiments—a phantom approach. Phys Med. doi: 10.1016/j.ejmp.2011.12.004, S1120-1797(11)00160-8[pii]
  13. Okada M, Kim T, Murakami T (2011) Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.). Abdom Imaging 36(3):273–281. doi: 10.1007/s00261-011-9684-2 PubMedCrossRefGoogle Scholar
  14. Pinho D, Kulkarni N, Savage C, Sahani D (2011) Initial experience with automated kVp selection for abdomen CT scanning. Annual meeting RSNA ChicagoGoogle Scholar
  15. Rogalla P, Kloeters C, Hein PA (2009) CT technology overview: 64-slice and beyond. Radiol Clin North Am 47(1):1–11. doi: 10.1016/j.rcl.2008.10.004, S0033-8389(08)00188-7[pii]
  16. Schmidt TG (2011) What is inverse-geometry CT? J Cardiovasc Comput Tomogr 5(3):145–148. doi: 10.1016/j.jcct.2011.04.003, S1934-5925(11)00174-2[pii]Google Scholar
  17. Tang J, Hsieh J, Chen GH (2010) Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys 37(8):4377–4388PubMedCrossRefGoogle Scholar
  18. Wang AS, Harrison D, Lobastov V, Tkaczyk JE (2011) Pulse pileup statistics for energy discriminating photon counting X-ray detectors. Med Phys 38(7):4265–4275PubMedCrossRefGoogle Scholar
  19. Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J (2011) Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 20(1):161–175. doi: 10.1109/TIP.2010.2058811 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations