• Wim Van Paesschen
  • Karolien Goffin
  • Koen Van Laere
Part of the Medical Radiology book series (MEDRAD)


Ictal perfusion single photon emission computed tomography and positron emission tomography of brain metabolism are functional nuclear imaging modalities that are useful in the presurgical evaluation of patients with refractory focal epilepsy, and provide information on the ictal onset zone, seizure propagation pathways, and functional deficit zones. Combined with electrophysiological and coregistered MRI data, these techniques allow a noninvasive presurgical evaluation in a growing number of patients with refractory focal epilepsy, and are particularly useful in patients with normal MRI findings, focal dysplastic lesions, dual pathology and discordant seizure symptoms, and electrophysiology and morphological data. In addition, these techniques may provide crucial information in the planning of invasive electroencephalography studies.


Positron Emission Tomography Single Photon Emission Compute Tomography Temporal Lobe Epilepsy Epilepsy Surgery Hippocampal Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahnlide JA, Rosen I, Linden-Mickelsson TP, Kallen K (2007) Does SISCOM contribute to favorable seizure outcome after epilepsy surgery? Epilepsia 48:579–588PubMedCrossRefGoogle Scholar
  2. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 27(65):1873–1887CrossRefGoogle Scholar
  3. Blümcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174PubMedCrossRefGoogle Scholar
  4. Blumenfeld H, McNally KA, Vanderhill SD et al (2004) Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 14:892–902PubMedCrossRefGoogle Scholar
  5. Burneo JG, Faught E, Knowlton RC et al (2003) Temporal lobectomy in congenital porencephaly associated with hippocampal sclerosis. Arch Neurol 60:830–834PubMedCrossRefGoogle Scholar
  6. Carne RP, O’Brien TJ, Kilpatrick CJ et al (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285PubMedCrossRefGoogle Scholar
  7. Cendes F, Cook MJ, Watson C et al (1995) Frequency and characteristics of dual pathology in patients with lesional epilepsy. Neurology 45:2058–2064PubMedCrossRefGoogle Scholar
  8. Chang EF, Wang DD, Barkovich AJ et al (2011) Predictors of seizure freedom after surgery for malformations of cortical development. Ann Neurol 70:151–162Google Scholar
  9. Chassagnon S, Namer IJ, Armspach JP et al (2009) SPM analysis of ictal-interictal SPECT in mesial temporal lobe epilepsy: relationships between ictal semiology and perfusion changes. Epilepsy Res 85:252–260PubMedCrossRefGoogle Scholar
  10. Chassoux F, Rodrigo S, Semah F et al (2010) FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology 14(75):2168–2175CrossRefGoogle Scholar
  11. Cho JW, Hong SB, Lee JH et al (2010) Contralateral hyperperfusion and ipsilateral hypoperfusion by ictal SPECT in patients with mesial temporal lobe epilepsy. Epilepsy Res 88:247–254PubMedCrossRefGoogle Scholar
  12. Diehl B, LaPresto E, Najm I et al (2003) Neocortical temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampal sclerosis associated with microscopic cortical dysplasia. Epilepsia 44:559–564PubMedCrossRefGoogle Scholar
  13. Duncan JS (2010) Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6:537–550PubMedCrossRefGoogle Scholar
  14. Dupont P, Van Paesschen W, Palmini A et al (2006) Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone. Epilepsia 47:1550–1557PubMedCrossRefGoogle Scholar
  15. Goffin K, Dedeurwaerdere S, Van Laere KJ, Van Paesschen W (2008) Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 38:227–239PubMedCrossRefGoogle Scholar
  16. Goffin K, Van Paesschen W, Dupont P et al (2010) Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging 37:1148–1155PubMedCrossRefGoogle Scholar
  17. Henry TR, Mazziotta JC, Engel J Jr et al (1990) Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cereb Blood Flow Metab 10:748–757PubMedCrossRefGoogle Scholar
  18. Henry TR, Mazziotta JC, Engel J Jr (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50:582–589PubMedCrossRefGoogle Scholar
  19. Jokeit H, Seitz RJ, Markowitsch HJ, Neumann N, Witte OW, Ebner A (1997) Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy. Brain 120(Pt 12):2283–2294PubMedCrossRefGoogle Scholar
  20. Kapucu OL, Nobili F, Varrone A et al (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36:2093–2102PubMedCrossRefGoogle Scholar
  21. Kim JH, Im KC, Kim JS et al (2007) Ictal hyperperfusion patterns in relation to ictal scalp EEG patterns in patients with unilateral hippocampal sclerosis: a SPECT study. Epilepsia 48:270–277PubMedCrossRefGoogle Scholar
  22. Kim JT, Bai SJ, Choi KO et al (2009) Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 18:504–510PubMedCrossRefGoogle Scholar
  23. Kim YH, Kang HC, Kim DS et al (2011) Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery. Epilepsia 52:722–727PubMedCrossRefGoogle Scholar
  24. Knowlton RC, Elgavish RA, Bartolucci A et al (2008) Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 64:35–41PubMedCrossRefGoogle Scholar
  25. Lee SK, Lee DS, Yeo JS et al (2002) FDG-PET images quantified by probabilistic atlas of brain and surgical prognosis of temporal lobe epilepsy. Epilepsia 43:1032–1038PubMedCrossRefGoogle Scholar
  26. Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525–532PubMedCrossRefGoogle Scholar
  27. Li LM, Fish DR, Sisodiya SM, Shorvon SD, Alsanjari N, Stevens JM (1995) High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J Neurol Neurosurg Psychiatry 59:384–387PubMedCrossRefGoogle Scholar
  28. Li LM, Cendes F, Andermann F et al (1999) Surgical outcome in patients with epilepsy and dual pathology. Brain 122(Pt 5):799–805PubMedCrossRefGoogle Scholar
  29. Lüders H, Schuele SU (2006) Epilepsy surgery in patients with malformations of cortical development. Curr Opin Neurol 19:169–174PubMedCrossRefGoogle Scholar
  30. Marusic P, Najm IM, Ying Z et al (2002) Focal cortical dysplasias in eloquent cortex: functional characteristics and correlation with MRI and histopathologic changes. Epilepsia 43:27–32PubMedCrossRefGoogle Scholar
  31. Nelissen N, Van Paesschen W, Baete K et al (2006) Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 15(32):684–695CrossRefGoogle Scholar
  32. O’Brien TJ, So EL, Mullan BP et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50:445–454PubMedCrossRefGoogle Scholar
  33. O’Brien TJ, So EL, Mullan BP et al (2000) Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 12(55):1668–1677CrossRefGoogle Scholar
  34. O’Brien TJ, So EL, Cascino GD et al (2004) Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia 45:367–376PubMedCrossRefGoogle Scholar
  35. Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 23(62):S2–S8CrossRefGoogle Scholar
  36. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700PubMedCrossRefGoogle Scholar
  37. Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 11(71):1594–1601CrossRefGoogle Scholar
  38. Savic I, Altshuler L, Baxter L, Engel J Jr (1997) Pattern of interictal hypometabolism in PET scans with fludeoxyglucose F 18 reflects prior seizure types in patients with mesial temporal lobe seizures. Arch Neurol 54:129–136PubMedCrossRefGoogle Scholar
  39. Takaya S, Hanakawa T, Hashikawa K et al (2006) Prefrontal hypofunction in patients with intractable mesial temporal lobe epilepsy. Neurology 14(67):1674–1676CrossRefGoogle Scholar
  40. Uijl SG, Leijten FS, Arends JB, Parra J, van Huffelen AC, Moons KG (2007) The added value of [18F]-fluoro-D-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia 48:2121–2129PubMedCrossRefGoogle Scholar
  41. Valenti MP, Froelich S, Armspach JP et al (2002) Contribution of SISCOM imaging in the presurgical evaluation of temporal lobe epilepsy related to dysembryoplastic neuroepithelial tumors. Epilepsia 43:270–276PubMedCrossRefGoogle Scholar
  42. Van Paesschen W (2004) Ictal SPECT. Epilepsia 45(Suppl 4):35–40PubMedCrossRefGoogle Scholar
  43. Van Paesschen W, Dupont P, Van Heerden B et al (2000) Self-injection ictal SPECT during partial seizures. Neurology 23(54):1994–1997CrossRefGoogle Scholar
  44. Van Paesschen W, Dupont P, Van Driel G, Van Billoen H, Maes A (2003) SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126:1103–1111PubMedCrossRefGoogle Scholar
  45. Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere KJ (2007a) The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 20:194–202PubMedCrossRefGoogle Scholar
  46. Van Paesschen W, Porke K, Fannes K et al (2007b) Cognitive deficits during status epilepticus and time course of recovery: a case report. Epilepsia 48:1979–1983PubMedCrossRefGoogle Scholar
  47. Varghese GI, Purcaro MJ, Motelow JE et al (2009) Clinical use of ictal SPECT in secondarily generalized tonic-clonic seizures. Brain 132:2102–2113PubMedCrossRefGoogle Scholar
  48. Wu JY, Salamon N, Kirsch HE et al (2010) Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology 2(74):392–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wim Van Paesschen
    • 1
  • Karolien Goffin
    • 2
  • Koen Van Laere
    • 2
  1. 1.Department of NeurologyUniversity Hospital Leuven LeuvenBelgium
  2. 2.Division of Nuclear MedicineUniversity Hospital Leuven and Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations