Skip to main content

Radiobiology of Stereotactic Body Radiation Therapy/Stereotactic Ablative Radiotherapy

  • Chapter
Stereotactic Body Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Stereotactic body radiation therapy (SBRT) or stereotactic ablative radiotherapy (SABR) is rapidly being adopted as a treatment modality, particularly for liver and lung tumors, and because of the dramatic improvements in tumor control, the use of SBRT is being directed toward other anatomical sites. The success of SBRT has been primarily technology-driven; however, application of fully potent SBRT regimes is now impeded by biological limitations. While the use of SBRT will continue to increase, there are aspects of both normal tissue and tumor response to high dose per fraction radiation exposures that require a further understanding in order to augment the technology gains as well as to minimize the potential harm done by inappropriate application of fully potent SBRT regimes. From a radiobiological perspective, there is a shift in thinking about the models used to extrapolate biological effects at high dose per fraction although the underlying mechanisms are not understood. There are also potential scheduling benefits for SBRT that can be exploited. As such, it may be appropriate to re-examine radioprotective or hypoxic cell cytotoxic agents that were either abandoned or not actively used given their considerable side effects. This may be especially true for hypoxia as the argument can be made on a mechanistic basis that SBRT is inappropriate for use with hypoxic tumors. However, we would challenge that notion. We will discuss these topics from a radiobiological perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  • Abraham RT (2004) PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3:883–887

    Article  CAS  Google Scholar 

  • Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, Alcock C, Anthoney A, Vjaters E, Dunk CR, Harris PA, Wong A, Lalani AS, Twelves CJ (2008) Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin Cancer Res 14:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Anscher MS, Chen L, Rabbani Z, Kang S, Larrier N, Huang H, Samulski TV, Dewhirst MW, Brizel DM, Folz RJ, Vujaskovic Z (2005) Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int J Radiat Oncol Biol Phys 62:255–259

    Article  PubMed  Google Scholar 

  • Antonadou D, Petridis A, Synodinou M, Throuvalas N, Bolanos N, Veslemes M, Sagriotis A (2003a) Amifostine reduces radiochemotherapy-induced toxicities in patients with locally advanced non-small cell lung cancer. Semin Oncol 30:2–9

    Article  PubMed  CAS  Google Scholar 

  • Antonadou D, Throuvalas N, Petridis A, Bolanos N, Sagriotis A, Synodinou M (2003b) Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 57:402–408

    Article  PubMed  CAS  Google Scholar 

  • Astrahan M (2008) BED calculations for fractions of very high dose: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2007;69:S623–S624) Int J Radiat Oncol Biol Phys 71:963; author reply 963–964

    Google Scholar 

  • Begg AC, Sheldon PW, Foster JL (1974) Demonstration of radiosensitization of hypoxic cells in solid tumours by metronidazole. Br J Radiol 47:399–404

    Article  PubMed  CAS  Google Scholar 

  • Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    Article  PubMed  CAS  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    PubMed  CAS  Google Scholar 

  • Brown JM (1984) Clinical trials of radiosensitizers: what should we expect? Int J Radiat Oncol Biol Phys 10:425–429

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (1993) SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 67:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  • Buentzel J, Micke O, Adamietz IA, Monnier A, Glatzel M, de Vries A (2006) Intravenous amifostine during chemoradiotherapy for head-and-neck cancer: a randomized placebo-controlled phase III study. Int J Radiat Oncol Biol Phys 64:684–691

    Article  PubMed  CAS  Google Scholar 

  • Burma S, Chen BP, Chen DJ (2006) Role of non-homologous end joining in the repair of DNA double-strand breaks book: DNA repair, genetic instability, and cancer. DNA Repair (Amsterdam) 5:1042–1048

    Google Scholar 

  • Cardenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, Dewhirst MW (2008) The pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68:5812–5819

    Article  PubMed  CAS  Google Scholar 

  • Carlson DJ, Keall PJ, Loo BW Jr, Chen ZJ, Brown JM (2011) Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys 79:1188–1195

    Article  PubMed  Google Scholar 

  • Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26:333–339

    Article  PubMed  CAS  Google Scholar 

  • Chan N, Koch CJ, Bristow RG (2009) Tumor hypoxia as a modifier of DNA strand break and cross-link repair. Curr Mol Med 9:401–410

    Article  PubMed  CAS  Google Scholar 

  • De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8:393–404

    Article  PubMed  Google Scholar 

  • Delanian S, Baillet F, Huart J, Lefaix JL, Maulard C, Housset M (1994) Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother Oncol 32:12–20

    Article  PubMed  CAS  Google Scholar 

  • Dorr W, Spekl K, Farrell CL (2002a) Amelioration of acute oral mucositis by keratinocyte growth factor: fractionated irradiation. Int J Radiat Oncol Biol Phys 54:245–251

    Article  PubMed  CAS  Google Scholar 

  • Dorr W, Spekl K, Farrell CL (2002b) The effect of keratinocyte growth factor on healing of manifest radiation ulcers in mouse tongue epithelium. Cell Prolif 35(Suppl 1):86–92

    Article  PubMed  CAS  Google Scholar 

  • Edwards RA, Witherspoon M, Wang K, Afrasiabi K, Pham T, Birnbaumer L, Lipkin SM (2009) Epigenetic repression of DNA mismatch repair by inflammation and hypoxia in inflammatory bowel disease-associated colorectal cancer. Cancer Res 69:6423–6429

    Article  PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton H (1959) X-ray damage and recovery in mammalian cells in culture. Nature 184:1293–1295

    Article  PubMed  CAS  Google Scholar 

  • Ellis F (1971) Nominal standard dose and the ret. Br J Radiol 44:101–108

    Article  PubMed  CAS  Google Scholar 

  • Epperly M, Bray J, Kraeger S, Zwacka R, Engelhardt J, Travis E, Greenberger J (1998) Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther 5:196–208

    Article  PubMed  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF (2008) Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852) Int J Radiat Oncol Biol Phys 72:957; author reply 958

    Google Scholar 

  • Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, Marks LB, Anscher MS (2001) Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 50:899–908

    Article  PubMed  CAS  Google Scholar 

  • Fujino M, Shirato H, Onishi H, Kawamura H, Takayama K, Koto M, Onimaru R, Nagata Y, Hiraoka M (2006) Characteristics of patients who developed radiation pneumonitis requiring steroid therapy after stereotactic irradiation for lung tumors. Cancer J 12:41–46

    Article  PubMed  Google Scholar 

  • Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barros M, Thin TH, Maj J, Cordon-Cardo C, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited. Cancer Res 70:8179–8186

    Article  PubMed  CAS  Google Scholar 

  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  PubMed  CAS  Google Scholar 

  • Grdina DJ, Murley JS, Kataoka Y, Epperly W (2002) Relationships between cytoprotection and mutation prevention by WR-1065. Mil Med 167:51–53

    PubMed  Google Scholar 

  • Grdina DJ, Murley JS, Kataoka Y, Baker KL, Kunnavakkam R, Coleman MC, Spitz DR (2009) Amifostine induces antioxidant enzymatic activities in normal tissues and a transplantable tumor that can affect radiation response. Int J Radiat Oncol Biol Phys 73:886–896

    Article  PubMed  CAS  Google Scholar 

  • Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835

    Article  PubMed  CAS  Google Scholar 

  • Hackenbeck T, Knaup KX, Schietke R, Schodel J, Willam C, Wu X, Warnecke C, Eckardt KU, Wiesener MS (2009) HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle 8:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331:718–725

    Article  PubMed  CAS  Google Scholar 

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22:1834–1843

    Article  PubMed  CAS  Google Scholar 

  • Hammond EM, Green SL, Giaccia AJ (2003) Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest. Mutat Res 532:205–213

    Article  PubMed  CAS  Google Scholar 

  • He J, Luster TA, Thorpe PE (2007) Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin Cancer Res 13:5211–5218

    Article  PubMed  CAS  Google Scholar 

  • He J, Yin Y, Luster TA, Watkins L, Thorpe PE (2009) Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 15:6871–6880

    Article  PubMed  CAS  Google Scholar 

  • Henk JM, Bishop K, Shepherd SF (2003) Treatment of head and neck cancer with CHART and nimorazole: phase II study. Radiother Oncol 66:65–70

    Article  PubMed  Google Scholar 

  • Hewitt HB, Wilson CW (1959) A survival curve for mammalian leukaemia cells irradiated in vivo (implications for the treatment of mouse leukaemia by whole-body irradiation). Br J Cancer 13:69–75

    Article  PubMed  CAS  Google Scholar 

  • Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 19:106–111

    Article  PubMed  Google Scholar 

  • Hornsey S (1977) Protection by hypoxia and the effect of low oxygen tensions on radiosensitivity. Experientia Suppl 27:31–43

    PubMed  CAS  Google Scholar 

  • Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ, Moreau LA, Unitt C, Bronson RT, Thomas HD, Newell DR, D’Andrea AD, Curtin NJ, Wong KK, Shapiro GI (2011) Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 17:875–882

    Article  PubMed  CAS  Google Scholar 

  • Kang S (2003) Overexpression of extracellular superoxide dismutase protects mice against radiation-induced lung injury. Int J Radiat Biol Oncol Phys 57:1056–1066

    Article  CAS  Google Scholar 

  • Kataoka Y, Basic I, Perrin J, Grdina DJ (1992) Antimutagenic effects of radioprotector WR-2721 against fission-spectrum neurons and 60Co gamma-rays in mice. Int J Radiat Biol 61:387–392

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y, Perrin J, Hunter N, Milas L, Grdina DJ (1996) Antimutagenic effects of amifostine: clinical implications. Semin Oncol 23:53–57

    PubMed  CAS  Google Scholar 

  • Kavanagh BD, Newman F (2008) Toward a unified survival curve: in regard to Park et al. (IntJ Radiat Oncol Biol Phys 2008;70:847–852) and Krueger et al. (Int J Radiat Oncol Biol Phys 2007;69:1262–1271) Int J Radiat Oncol Biol Phys 71:958–959

    Google Scholar 

  • Kawase T, Kunieda E, Deloar HM, Seki S, Sugawara A, Tsunoo T, Ogawa EN, Ishizaka A, Kameyama K, Takeda A, Kubo A (2007) Experimental stereotactic irradiation of normal rabbit lung: computed tomographic analysis of radiation injury and the histopathological features. Radiat Med 25:453–461

    Article  PubMed  Google Scholar 

  • Komaki R, Lee JS, Milas L, Lee HK, Fossella FV, Herbst RS, Allen PK, Liao Z, Stevens CW, Lu C, Zinner RG, Papadimitrakopoulou VA, Kies MS, Blumenschein GR Jr, Pisters KM, Glisson BS, Kurie J, Kaplan B, Garza VP, Mooring D, Tucker SL, Cox JD (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58:1369–1377

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI (2002) Hypofractionated and accelerated radiotherapy with amifostine cytoprotection (HypoARC): a new concept in radiotherapy and encouraging results in breast cancer. Semin Oncol 29:42–46

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI, Patlakas G, Froudarakis ME, Kyrgias G, Skarlatos J, Abatzoglou I, Bougioukas G, Bouros D (2007) Hypofractionated accelerated radiochemotherapy with cytoprotection (Chemo-HypoARC) for inoperable non-small cell lung carcinoma. Anticancer Res 27:3625–3631

    PubMed  CAS  Google Scholar 

  • Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241

    PubMed  CAS  Google Scholar 

  • Lin A, Lawrence TS (2006) An anaphylactoid reaction from amifostine. Radiother Oncol 79:352

    Article  PubMed  Google Scholar 

  • Maj JG, Paris F, Haimovitz-Friedman A, Venkatraman E, Kolesnick R, Fuks Z (2003) Microvascular function regulates intestinal crypt response to radiation. Cancer Res 63:4338–4341

    PubMed  CAS  Google Scholar 

  • Marks LB (1995) Extrapolating hypofractionated radiation schemes from radiosurgery data: regarding Hall et al., IJROBP 21:819–824; 1991 and Hall and Brenner, IJROBP 25:381–385; 1993. Int J Radiat Oncol Biol Phys 32:274–276

    Google Scholar 

  • McGarry RC, Papiez L, Williams M, Whitford T, Timmerman RD (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 63:1010–1015

    Article  PubMed  Google Scholar 

  • McKenna F, Ahmad S (2009) Toward a unified survival curve: in regard to Kavanagh and Newman (Int J Radiat Oncol Biol Phys 2008;71:958–959) and Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852) Int J Radiat Oncol Biol Phys 73:640

    Google Scholar 

  • Mell LK, Malik R, Komaki R, Movsas B, Swann RS, Langer C, Antonadou D, Koukourakis M, Mundt AJ (2007) Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys 68:111–118

    Article  PubMed  CAS  Google Scholar 

  • Moulder JE, Cohen EP (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 17:141–148

    Article  PubMed  Google Scholar 

  • Mueller-Klieser W, Schlenger KH, Walenta S, Gross M, Karbach U, Hoeckel M, Vaupel P (1991) Pathophysiological approaches to identifying tumor hypoxia in patients. Radiother Oncol 20(Suppl 1):21–28

    Article  PubMed  Google Scholar 

  • Muniyappa H, Song S, Mathews CK, Das KC (2009) Reactive oxygen species-independent oxidation of thioredoxin in hypoxia: inactivation of ribonucleotide reductase and redox-mediated checkpoint control. J Biol Chem 284:17069–17081

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518

    PubMed  CAS  Google Scholar 

  • Overgaard J, Overgaard M, Nielsen OS, Pedersen AK, Timothy AR (1982) A comparative investigation of nimorazole and misonidazole as hypoxic radiosensitizers in a C3H mammary carcinoma in vivo. Br J Cancer 46:904–911

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Sand Hansen H, Lindelov B, Overgaard M, Jorgensen K, Rasmusson B, Berthelsen A (1991) Nimorazole as a hypoxic radiosensitizer in the treatment of supraglottic larynx and pharynx carcinoma. First report from the Danish Head and Neck Cancer Study (DAHANCA) protocol 5-85. Radiother Oncol 20(Suppl 1):143–149

    Google Scholar 

  • Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, Lindelov B, Jorgensen K (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the danish head and neck cancer study (DAHANCA) Protocol 5-85. Radiother Oncol 46:135–146

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos KP, Goel S, Beeram M, Wong A, Desai K, Haigentz M, Milian ML, Mani S, Tolcher A, Lalani AS, Sarantopoulos J (2008) A phase 1 open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res 14:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou MV, Bloomer WD (2003) NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. Clin Cancer Res 9:5714–5720

    PubMed  CAS  Google Scholar 

  • Papadopoulou MV, Ji M, Rao MK, Bloomer WD (2001) 4-[3-(2-Nitro-1-imidazolyl)propylamino]-7-chloroquinoline hydrochloride (NLCQ-1), a novel bioreductive agent as radiosensitizer in vitro and in vivo: comparison with tirapazamine. Oncol Res 12:325–333

    PubMed  CAS  Google Scholar 

  • Papadopoulou MV, Bloomer WD, Taylor AP, Hernandez M, Blumenthal RD, Hollingshead MG (2007) Advantage of combining NLCQ-1 (NSC 709257) with radiation in treatment of human head and neck xenografts. Radiat Res 168:65–71

    Article  PubMed  CAS  Google Scholar 

  • Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  • Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108:3406–3411

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, O’Shea JA, Farrell CL, Rex K, Booth C (2001) The effects of repeated doses of keratinocyte growth factor on cell proliferation in the cellular hierarchy of the crypts of the murine small intestine. Cell Growth Differ 12:265–275

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed  CAS  Google Scholar 

  • Rades D, Fehlauer F, Bajrovic A, Mahlmann B, Richter E, Alberti W (2004) Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother Oncol 70:261–264

    Article  PubMed  CAS  Google Scholar 

  • Rischin D, Peters L, Fisher R, Macann A, Denham J, Poulsen M, Jackson M, Kenny L, Penniment M, Corry J, Lamb D, McClure B (2005) Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the trans-tasman radiation oncology group (TROG 98.02). J Clin Oncol 23:79–87

    Article  PubMed  CAS  Google Scholar 

  • Rischin D, Peters LJ, O’Sullivan B, Giralt J, Fisher R, Yuen K, Trotti A, Bernier J, Bourhis J, Ringash J, Henke M, Kenny L (2010) Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the trans-tasman radiation oncology group. J Clin Oncol 28:2989–2995

    Article  PubMed  CAS  Google Scholar 

  • Robbins ME, Diz DI (2006) Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 64:6–12

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  • Saha D, Watkins L, Yin Y, Thorpe P, Story MD, Song K, Raghavan P, Timmerman R, Chen B, Minna JD, Solberg TD (2010) An orthotopic lung tumor model for image-guided microirradiation in rats. Radiat Res 174:62–71

    Article  PubMed  CAS  Google Scholar 

  • Sasse AD, Clark LG, Sasse EC, Clark OA (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 64:784–791

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8 (discussion 8–14, 33–16)

    Google Scholar 

  • Sheldon PW, Hill SA, Foster JL, Fowler JF (1976) Radiosensitization of C3H mouse mammary tumours using fractionated doses of X rays with the drug Ro-07-0582. Br J Radiol 49:76–80

    Google Scholar 

  • Skov KA, MacPhail S (1994) Low concentrations of nitroimidazoles: effective radiosensitizers at low doses. Int J Radiat Oncol Biol Phys 29:87–93

    Article  PubMed  CAS  Google Scholar 

  • Song SY, Choi W, Shin SS, Lee SW, Ahn SD, Kim JH, Je HU, Park CI, Lee JS, Choi EK (2009) Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer 66:89–93

    Article  PubMed  Google Scholar 

  • Sprong D, Janssen HL, Vens C, Begg AC (2006) Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys 64:562–572

    Article  PubMed  CAS  Google Scholar 

  • Stone HB (1976) Metronidazole and fractionated radiotherapy of a murine tumor. Int J Radiat Oncol Biol Phys 1:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Strandquist M (1944) Studien die kumulative wirking der roentgenstrahlen bei fraktionierung. Acta Radiol Suppl 55:1–44

    Google Scholar 

  • Sugie C, Shibamoto Y, Ito M, Ogino H, Suzuki H, Uto Y, Nagasawa H, Hori H (2005) Reevaluation of the radiosensitizing effects of sanazole and nimorazole in vitro and in vivo. J Radiat Res (Tokyo) 46:453–459

    Article  CAS  Google Scholar 

  • Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Natl Rev Mol Cell Biol 7:739–750

    Article  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78

    Article  PubMed  CAS  Google Scholar 

  • Till JE, Mc CEA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  • Timmerman RD, Story M (2006) Stereotactic body radiation therapy: a treatment in need of basic biological research. Cancer J 12:19–20

    Article  PubMed  Google Scholar 

  • Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, Ewing M, Abdulrahman R, DesRosiers C, Williams M, Fletcher J (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Article  PubMed  Google Scholar 

  • Timmerman R, Bastasch M, Saha D, Abdulrahman R, Hittson W, Story M (2007a) Optimizing dose and fractionation for stereotactic body radiation therapy. Normal tissue and tumor control effects with large dose per fraction. Front Radiat Ther Oncol 40:352–365

    Article  PubMed  Google Scholar 

  • Timmerman RD, Kavanagh BD, Cho LC, Papiez L, Xing L (2007b) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952

    Article  PubMed  Google Scholar 

  • Timmerman RD, Park C, Kavanagh BD (2007c) The North American experience with stereotactic body radiation therapy in non-small cell lung cancer. J Thorac Oncol 2:S101–S112

    Article  PubMed  Google Scholar 

  • Timothy AR, Overgaard J, Overgaard M (1984) A phase I clinical study of Nimorazole as a hypoxic radiosensitizer. Int J Radiat Oncol Biol Phys 10:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, Dewhirst MW, Haroon ZA (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50:851–855

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV, Fridovich I, Dewhirst MW, Anscher MS (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33:857–863

    Article  PubMed  CAS  Google Scholar 

  • Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA (2010) A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med 2:39ra48

    Article  PubMed  Google Scholar 

  • Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18:114–124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Story .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Story, M.D., Nirodi, C., Park, C. (2012). Radiobiology of Stereotactic Body Radiation Therapy/Stereotactic Ablative Radiotherapy. In: Lo, S., Teh, B., Lu, J., Schefter, T. (eds) Stereotactic Body Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_551

Download citation

  • DOI: https://doi.org/10.1007/174_2012_551

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25604-2

  • Online ISBN: 978-3-642-25605-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics