Skip to main content

Techniques for Diffusion and Perfusion Assessment in Bone-Marrow MRI

  • Chapter
Magnetic Resonance Imaging of the Bone Marrow

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

In addition to conventional magnetic resonance imaging (MRI) approaches of bone marrow such as T 1-weighted or short-tau inversion-recovery (STIR) MRI, newer techniques are available today allowing the visual and also quantitative assessment of several microstructural and physiological tissue parameters. The most important of these new techniques are MRI of hemodynamic parameters (“perfusion MRI”) and MRI of molecular water diffusion (“diffusion MRI”). Both techniques are aimed at tissue parameters beyond proton density, relaxation properties, or fat content. They allow the (absolute) quantification of properties such as the diffusion coefficient of water molecules in tissue or hemodynamic parameters including the blood volume and the blood flow. In this chapter, the physical and physiological basics of diffusion and perfusion MRI are introduced and discussed with respect to their application in bone-marrow MRI. Non-quantitative and quantitative approaches for the analysis of diffusion-weighted images and semi-quantitative and quantitative approaches for the analysis of dynamic contrast-enhanced perfusion MRI are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If normalized to the volume, the regional blood volume can also be given in % = mL/(100 mL) and the regional flow-related quantities in %/min = mL/(100 mL min).

References

  • Alsop DC (1997) Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med 38(4):527–533

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39(6):928–934

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Mattiello J et al (1994a) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254

    Article  CAS  Google Scholar 

  • Basser PJ, Mattiello J et al (1994b) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  CAS  Google Scholar 

  • Baur A, Stabler A et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207(2):349–356

    PubMed  CAS  Google Scholar 

  • Baur A, Huber A et al (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol 22(2):366–372

    PubMed  CAS  Google Scholar 

  • Biffar A, Dietrich O et al (2010a) Diffusion and perfusion imaging of bone marrow. Eur J Radiol 76(3):323–328

    Article  PubMed  Google Scholar 

  • Biffar A, Sourbron S et al (2010b) Combined diffusion-weighted and dynamic contrast-enhanced imaging of patients with acute osteoporotic vertebral fractures. Eur J Radiol 76(3):298–303

    Article  PubMed  Google Scholar 

  • Biffar A, Sourbron S et al (2010c) Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow. Magn Reson Med 64(1):115–124

    Article  PubMed  Google Scholar 

  • Biffar A, Baur-Melnyk A et al (2011a) Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Invest Radiol 46(10):601–609

    Article  PubMed  Google Scholar 

  • Biffar A, Schmidt GP et al (2011b) Quantitative analysis of vertebral bone marrow perfusion using dynamic contrast-enhanced MRI: initial results in osteoporotic patients with acute vertebral fracture. J Magn Reson Imaging 33(3):676–683

    Article  PubMed  Google Scholar 

  • Brix G, Griebel J et al (2010) Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 37(Suppl 1):S30–S51

    Article  PubMed  Google Scholar 

  • Brockstedt S, Moore JR et al (2000) High-resolution diffusion imaging using phase-corrected segmented echo-planar imaging. Magn Reson Imaging 18(6):649–657

    Article  PubMed  CAS  Google Scholar 

  • Bruder H, Fischer H et al (1988) A new steady-state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts. Magn Reson Med 7(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB (1993) The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med 29(2):235–243

    Article  PubMed  CAS  Google Scholar 

  • Capuani S, Rossi C et al (2005) Diffusion tensor imaging to study anisotropy in a particular porous system: the trabecular bone network. Solid State Nucl Magn Reson 28(2–4):266–272

    Article  PubMed  CAS  Google Scholar 

  • Chan WP, Liu YJ et al (2011) Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. Am J Roentgenol 196(3):637–643

    Article  Google Scholar 

  • Chen WT, Shih TT et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220(1):213–218

    PubMed  CAS  Google Scholar 

  • Chen WT, Shih TT et al (2002) Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 15(3):308–314

    Article  PubMed  Google Scholar 

  • Cohen Y, Assaf Y (2002) High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues––a technical review. NMR Biomed 15(7–8):516–542

    Article  PubMed  Google Scholar 

  • Courcoutsakis N, Spanoudaki A et al (2011) Perfusion parameters analysis of the vertebral bone marrow in patients with Ph(1-) chronic myeloproliferative neoplasms (Ph(neg) MPN): a dynamic contrast-enhanced MRI (DCE-MRI) study. J Magn Reson Imaging. doi:10.1002/jmri.22870 [Epub ahead of print]

  • D’Agostino F, Dell’Aia P et al (2010) Differentiation of normal and neoplastic bone tissue in dynamic gadolinium-enhanced magnetic resonance imaging: validation of a semiautomated technique. Radiol Med 115(5):804–814

    Article  PubMed  Google Scholar 

  • Deoni SC, Peters TM et al (2004) Quantitative diffusion imaging with steady-state free precession. Magn Reson Med 51(2):428–433

    Article  PubMed  Google Scholar 

  • Dietrich O (2008) Diffusion-weighted imaging and diffusion tensor imaging. In: Reiser MF, Semmler W, Hricak H (eds) Magnetic Resonance Tomography. Springer, Heidelberg, pp. 130−152

    Google Scholar 

  • Dietrich O, Biffar A et al (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13(2):134–144

    Article  PubMed  Google Scholar 

  • Dietrich O, Biffar A et al (2010) Technical aspects of MR diffusion imaging of the body. Eur J Radiol 76(3):314–322

    Article  PubMed  Google Scholar 

  • Dietrich O, Baur-Melnyk A (2011) Diffusion-weighted MR imaging of the bone marrow and the spine. In: Taouli B (ed) Extra-cranial applications of diffusion-weighted MRI. Cambridge University Press, Cambridge, pp 144–161

    Google Scholar 

  • Dyke JP, Aaron RK (2010) Noninvasive methods of measuring bone blood perfusion. Ann N Y Acad Sci 1192:95–102

    Article  PubMed  CAS  Google Scholar 

  • Erlemann R, Reiser MF et al (1989) Musculoskeletal neoplasms: static and dynamic Gd-DTPA–enhanced MR imaging. Radiology 171(3):767–773

    PubMed  CAS  Google Scholar 

  • Gerdes CM, Kijowski R et al (2007) IDEAL imaging of the musculoskeletal system: robust water fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR Am J Roentgenol 189(5):W284–W291

    Article  PubMed  Google Scholar 

  • Glaser C, Weckbach S et al (2008) Musculoskeletal system. In: Reiser MF, Semmler W, Hricak H (eds) Magnetic resonance tomography. Springer, Heidelberg, pp 1079–1176

    Chapter  Google Scholar 

  • Griffith JF, Yeung DK et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3):945–951

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK et al (2009) Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J Magn Reson Imaging 29(6):1438–1442

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK et al (2011) Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol 21(6):1160–1169

    Article  PubMed  Google Scholar 

  • Gudbjartsson H, Maier SE et al (1996) Line scan diffusion imaging. Magn Reson Med 36(4):509–519

    Article  PubMed  CAS  Google Scholar 

  • Gyngell ML (1988) The application of steady-state free precession in rapid 2DFT NMR imaging: FAST and CE-FAST sequences. Magn Reson Imaging 6(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80(4):580–594

    Article  Google Scholar 

  • Jackson A, Buckley DL et al (eds) (2005) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Medical radiology––diagnostic imaging. Springer, Heidelberg

    Google Scholar 

  • Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710

    Article  PubMed  Google Scholar 

  • Kind T, Houtzager I et al (2010) Evaluation of model-independent deconvolution techniques to estimate blood perfusion. Conf Proc IEEE Eng Med Biol Soc 2602–2607

    PubMed  Google Scholar 

  • Koh DM, Collins DJ et al (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196(6):1351–1361

    Article  PubMed  Google Scholar 

  • Korosec FR, Frayne R et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36(3):345–351

    Article  PubMed  CAS  Google Scholar 

  • Lambregts DM, Maas M et al (2011) Whole-body diffusion-weighted magnetic resonance imaging: current evidence in oncology and potential role in colorectal cancer staging. Eur J Cancer 47(14):2107–2116

    Article  PubMed  Google Scholar 

  • Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7(3):346–351

    Article  PubMed  Google Scholar 

  • Le Bihan D, Breton E et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    PubMed  Google Scholar 

  • Le Bihan D, Breton E et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505

    PubMed  Google Scholar 

  • Le Roux P (2002) Non-CPMG Fast Spin Echo with full signal. J Magn Reson 155(2):278–292

    Article  PubMed  Google Scholar 

  • Lee H, Price RR (1994) Diffusion imaging with the MP-RAGE sequence. J Magn Reson Imaging 4(6):837–842

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Dyke JP et al (2009) Assessment of bone perfusion with contrast-enhanced magnetic resonance imaging. Orthop Clin North Am 40(2):249–257

    Article  PubMed  Google Scholar 

  • Li X, Yu A et al (2012) Quantitative characterization of bone marrow edema pattern in rheumatoid arthritis using 3 Tesla MRI. J Magn Reson Imaging 35(1):211–217

    Article  PubMed  CAS  Google Scholar 

  • Lim RP, Shapiro M et al (2008) 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol 29(10):1847–1854

    Article  PubMed  CAS  Google Scholar 

  • Luypaert R, Boujraf S et al (2001) Diffusion and perfusion MRI: basic physics. Eur J Radiol 38(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Ma HT, Griffith JF et al (2010) Modified brix model analysis of bone perfusion in subjects of varying bone mineral density. J Magn Reson Imaging 31(5):1169–1175

    Article  PubMed  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    PubMed  CAS  Google Scholar 

  • Merboldt KD, Hanicke W et al (1985) Self-Diffusion NMR Imaging Using Stimulated Echoes. J Magn Reson 64(3):479–486

    CAS  Google Scholar 

  • Merboldt KD, Bruhn H et al (1989) MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med 9(3):423–429

    Article  PubMed  CAS  Google Scholar 

  • Moehler TM, Hawighorst H et al (2001) Bone marrow microcirculation analysis in multiple myeloma by contrast-enhanced dynamic magnetic resonance imaging. Int J Cancer 93(6):862–868

    Article  PubMed  CAS  Google Scholar 

  • Montazel JL, Divine M et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229(3):703–709

    Article  PubMed  Google Scholar 

  • Norris DG (2007) Selective parity RARE imaging. Magn Reson Med 58(4):643–649

    Article  PubMed  Google Scholar 

  • Norris DG, Bornert P et al (1992) On the application of ultra-fast RARE experiments. Magn Reson Med 27(1):142–164

    Article  PubMed  CAS  Google Scholar 

  • Nosas-Garcia S, Moehler T et al (2005) Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging 22(1):154–162

    Article  PubMed  Google Scholar 

  • Oppelt A, Graumann R et al (1986) FISP—a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  • Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15(1):3–9

    Article  PubMed  Google Scholar 

  • Petersen ET, Zimine I et al (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701

    Article  PubMed  CAS  Google Scholar 

  • Pipe JG, Farthing VG et al (2002) Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 47(1):42–52

    Article  PubMed  Google Scholar 

  • Rahmouni A, Montazel JL et al (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229(3):710–717

    Article  PubMed  Google Scholar 

  • Robson MD, Anderson AW et al (1997) Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 38(1):82–88

    Article  PubMed  CAS  Google Scholar 

  • Rossi C, Capuani S et al (2005) DTI of trabecular bone marrow. Magn Reson Imaging 23(2):245–248

    Article  PubMed  Google Scholar 

  • Savvopoulou V, Maris TG et al (2011) Degenerative endplate changes of the lumbosacral spine: dynamic contrast-enhanced MRI profiles related to age, sex, and spinal level. J Magn Reson Imaging 33(2):382–389

    Article  PubMed  Google Scholar 

  • Shih TT, Liu HC et al (2004) Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 233(1):121–128

    Article  PubMed  Google Scholar 

  • Silbernagl S, Despopoulos A (2008) Color atlas of physiology. Thieme, Stuttgart

    Google Scholar 

  • Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76(3):304–313

    Article  PubMed  Google Scholar 

  • Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57(2):R1–R33

    Article  PubMed  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phy 42(1):288–292

    Article  CAS  Google Scholar 

  • Takahara T, Imai Y et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282

    PubMed  Google Scholar 

  • Taylor DG, Bushell MC (1985) The spatial-mapping of translational diffusion-coefficients by the NMR imaging technique. Phys Med Biol 30(4):345–349

    Article  PubMed  CAS  Google Scholar 

  • Tokuda O, Hayashi N et al (2005) Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol 34(10):632–638

    Article  PubMed  Google Scholar 

  • Turner R, Le Bihan D et al (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414

    PubMed  CAS  Google Scholar 

  • Vanel D (2004) MRI of bone metastases: the choice of the sequence. Cancer Imaging 4(1):30–35

    Article  PubMed  Google Scholar 

  • Wu EX, Buxton RB (1990) Effect of diffusion on the steady-state magnetization with pulsed field gradients. J Magn Reson 90(2):243–253

    Google Scholar 

  • Wu LM, Gu HY et al (2011) Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging 34(1):128–135

    Article  PubMed  Google Scholar 

  • Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10(3):393–407

    Article  Google Scholar 

  • Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietrich, O. (2013). Techniques for Diffusion and Perfusion Assessment in Bone-Marrow MRI. In: Baur-Melnyk, A. (eds) Magnetic Resonance Imaging of the Bone Marrow. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_549

Download citation

  • DOI: https://doi.org/10.1007/174_2012_549

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17859-7

  • Online ISBN: 978-3-642-17860-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics