Advertisement

Scan Parameters and CT Radiation Dose

  • Sarabjeet Singh
  • Mannudeep K.  Kalra
Part of the Medical Radiology book series (MEDRAD)

Abstract

The most important parameter for reducing radiation dose is ensuring appropriate clinical indication for CT scanning. Once appropriateness of clinical indication for CT has been established, radiologists, physicists and radiologic technologists should work closely to adapt individual scanning parameters that affect radiation dose. Establishing dose-efficient CT protocols is by no means a task simpler than orchestrating a symphony where scan parameters have to be in sync in order to yield satisfactory results. This chapter briefly describes scan parameters that affect radiation dose in CT.

Keywords

Image Noise Dose Length Product Reduce Radiation Dose Gantry Rotation Time High Image Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Discovery™ CT750 wHD, Learning and reference guide. Operator manual, English 5308208-1EN revision: 2 (10-08). GE Healthcare, LondonGoogle Scholar
  2. Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, Blum A (2011) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301Google Scholar
  3. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36(2):57–68 quiz 75–76PubMedCrossRefGoogle Scholar
  4. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771PubMedCrossRefGoogle Scholar
  5. Honda O, Yanagawa M, Inoue A, Kikuyama A, Yoshida S, Sumikawa H, Tobino K, Koyama M, Tomiyama N (2011) Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction. Br J Radiol 84:335–341Google Scholar
  6. Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances. SPIE Press, Bellingham Google Scholar
  7. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  8. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30(3):391–397PubMedCrossRefGoogle Scholar
  9. Lee KH, Kim YH, Hahn S, Lee KW, Kim TJ, Kang SB, Shin JH (2006) Computed tomography diagnosis of acute appendicitis: advantages of reviewing thin-section datasets using sliding slab average intensity projection technique. Invest Radiol 41(7):579–585PubMedCrossRefGoogle Scholar
  10. Mahesh M, Scatarige JC, Cooper J, Fishman EK (2001) Dose and pitch relationship for a particular multislice CT scanner. AJR Am J Roentgenol 177(6):1273–1275PubMedGoogle Scholar
  11. Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre JB, Hachulla AL, Remy J, Remy-Jardin M (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21(3):636–643PubMedCrossRefGoogle Scholar
  12. Prakash P, Kalra MK, Digumarthy SR, Hsieh J, Pien H, Singh S, Gilman MD, Shepard JA (2010) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34:40–45Google Scholar
  13. Singh S, Kalra MK, Moore MA, Shailam R, Liu B, Toth TL, Grant E, Westra SJ (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252(1):200–208PubMedCrossRefGoogle Scholar
  14. Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383PubMedCrossRefGoogle Scholar
  15. Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 2011(259):565–573CrossRefGoogle Scholar
  16. Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719Google Scholar
  17. Size-Specific Dose Estimates (SSDE) In Pediatric and Adult Body CT Examinations. AAPM report 204, 2011. http://www.aapm.org/pubs/reports/RPT_204.pdf. Accessed 27 Dec 2011
  18. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15(2):334–341PubMedCrossRefGoogle Scholar
  19. Yamaguchi M, Fujita H, Bessho Y, Inoue T, Asai Y, Murase K (2011) Investigation of optimal display size for detecting ground-glass opacity on high resolution computed tomography using a new digital contrast-detail phantom. Eur J Radiol 80(3):845–850PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of RadiologyHarvard Medical School, Massachusetts General HospitalBostonUSA

Personalised recommendations