Skip to main content

Historical Development of Stereotactic Ablative Radiotherapy

  • Chapter
Stereotactic Body Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Stereotactic radiosurgery (SRS) has been an effective modality for the treatment of benign and malignant cranial disease for over 50 years. Just as SRS revolutionized the practice of neurosurgery, stereotactic ablative radiotherapy (SAbR) in extracranial sites is now challenging conventional wisdom with regard to the practice of radiation oncology. This clinical paradigm change has been enabled in large part through a century of technological development described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler JR (1993) Frameless radiosurgery. In: Goetsch SJ, DeSalles AA (eds) Stereotactic surgery and radiosurger. Medical Physics Publishing, Madison, pp 237–248

    Google Scholar 

  • Adler JR, Cox RS (1996) Preliminary experience with the CyberKnife: image-guided stereotactic radiosurgery. In: Kondziolka D (ed) Radiosurgery 1995. Karger, Basel, pp. 316–326

    Google Scholar 

  • Adler JR, Chang SD, Murphy MJ et al (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Func Neurosurg 69:124–128

    Article  Google Scholar 

  • Adler JR, Murphy MJ, Chang SD et al (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1306

    PubMed  Google Scholar 

  • Agazaryan N, Solberg TD (2003) Segmental and dynamic intensity-modulated radiation delivery techniques for micro-multileaf collimator. Med Phys 30:1758–1767

    Article  PubMed  Google Scholar 

  • Agazaryan N, Solberg TD, DeMarco JJ (2003) Patient specific quality assurance for the delivery of intensity modulated radiotherapy. J Appl Clin Med Phys 4:40–50

    Article  PubMed  Google Scholar 

  • Andrews DW, Bednarz G, Evans JJ, Downes MB (2006) A review of 3 current radiosurgery systems. Surg Neurol 66:559–564

    Article  PubMed  Google Scholar 

  • Arellano AR, Solberg TD, Llacer J (2000) A clinically oriented inverse planning implementation. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin, pp 532–544

    Chapter  Google Scholar 

  • Axelsonn P, Johnsson R, Stromqvist B (1996) Mechanics of the external fixation test of the lumbar spine: a roentgen stereophotogrammetric analysis. Spine 21:330–333

    Article  Google Scholar 

  • Barcia-Salorio JL, Hernandez G, Broseta J et al (1982) Radio surgical treatment of carotid cavernous fistula. Appl Neurophysiol 45:520–522

    PubMed  CAS  Google Scholar 

  • Bayouth JE, Kaiser HS, Smith MC, Pennington EC et al (2007) Image-guided stereotactic radiosurgery using a specially designed high-dose-rate linac. Med Dosim 32:134–141

    Article  PubMed  Google Scholar 

  • Betti OO, Derechinsky YE (1982) Irradiations stereotaxiques multifaisceaux. Neurochirurgie 28:55–56

    Google Scholar 

  • Betti OO, Derechinsky YE (1984) Hyposelective encephalic irradiation with linear accelerator. Acta Neurochir 33:385–390

    Google Scholar 

  • Bischoff K (1950) Der konvergenstrahler, eine Röntgenstrahlenquelle mit extrem hohen prozentualen Tiefendosen (convergence irradiation, an X-ray source with high depth dose). Strahlentherapie 81:365

    Google Scholar 

  • Bischoff K (1952) Modern apparatus for cineroentgenography. Fortschr Geb Rontgenstr 76(1):58–59

    PubMed  CAS  Google Scholar 

  • Blomgren H, Lax I, Naslund I et al (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol 34:861–870

    Article  PubMed  CAS  Google Scholar 

  • Boda-Heggemann J, Walter C, Rahn A, Wertz H et al (2006) Repositioning accuracy of two different mask systems—3D revisited: comparison using true 3D/3D matching with cone beam CT. Int J Radiat Oncol Biol Phys 66:1568–1575

    Article  PubMed  Google Scholar 

  • Bova FJ, Buatti JM, Friedman WA et al (1997) The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys 38:875–882

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Roberts TS, Osborn AG (1980) Stereotaxic frame and computer software for CT-directed neurosurgical localization. Invest Radiol 15:308–312

    Article  PubMed  CAS  Google Scholar 

  • Cerviño L, Pawlicki T, Lawson J, Jiang S (2010) Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol 55:1863–1873

    Article  PubMed  Google Scholar 

  • Chang SD, Main W, Martin DP et al (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52:140–146

    PubMed  Google Scholar 

  • Chang J, Yenice KM, Narayana A, Gutin PH (2007) Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup. Med Phys 34:2077–2084

    Article  PubMed  Google Scholar 

  • Chang Z, Wang Z, Wu QJ et al (2008) Dosimetric characteristics of novalis Tx system with high definition multileaf collimator. Med Phys 35:4460–4463

    Article  PubMed  Google Scholar 

  • Chetty IC, Solberg TD, DeMarco JJ et al (2000) A phase-space model for simulating arbitrary intensity distributions for shaped radiosurgery beams using the Monte Carlo method. In Kondziolka D (ed) Radiosurgery 1999. S. Karger AG, Basel, pp 41–52

    Google Scholar 

  • Chinnaiyan P, Tomée W, Patel R, Chappell R et al (2003) 3D-ultrasound guided radiation therapy in the post-prostatectomy setting. Technol Cancer Res Treat 2:455–458

    PubMed  Google Scholar 

  • Cho J, Kodym R, Seliounine S et al (2010) High dose per fraction irradiation of limited lung volumes using an image-guided highly focused irradiator: simulating stereotactic body radiotherapy regimens in an animal model. Int J Radiat Oncol Biol Phys 77:895–902

    Article  PubMed  Google Scholar 

  • Clarke RH, Horsley VA (1906) On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J 2:1799–1800

    Google Scholar 

  • Colombo F, Benedetti A, Pozza F et al (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16:154–160

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove VP, Jahn U, Pfaender M et al (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336

    Article  PubMed  CAS  Google Scholar 

  • Coutard H (1932) Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1926. Am J Roentgenol 28:313

    Google Scholar 

  • Coutard H (1937) The results and methods of treatment of cancer by radiation. Annals Surg 106:584–598

    Article  CAS  Google Scholar 

  • Coutard H (1940) Present conception of treatment of cancer of the larynx. Radiology 34:136–145

    Google Scholar 

  • Cox RS, Murphy MJ (1995) Positioning accuracy of the neurotron 1000. Radiother Oncol 32(suppl1):301

    Google Scholar 

  • Dahlin H (1970) Om optimering av straldosfordelningar vid cerebral stralkirurgi Internal Report (GWI-R 1/70). Gustaf Werner Institute, Uppsala

    Google Scholar 

  • Dahlin H (1971) Computerized calculation of dosage in external radiotherapy. Nord Med 85:1248–1255

    PubMed  CAS  Google Scholar 

  • Dahlin H, Sarby B (1975) Destruction of small intracranial tumours with 60Co gamma radiation. Physical and technical considerations. Acta Radiol Ther Phys Biol 14:209–227

    PubMed  CAS  Google Scholar 

  • Daniel J (1896) The X-rays. Science 67:562–563

    Article  Google Scholar 

  • Das IJ, Downes MB, Corn BW et al (1996) Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit. Radiother Oncol 38:61–68

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Kennedy CW, Armour E et al (2007) The small-animal radiation research platform (SARRP): dosimetry of a focused lens system. Phys Med Biol 52:2729–2740

    Article  PubMed  Google Scholar 

  • DeSalles AAF, Solberg TD, Mischel P et al (1996) Arteriovenous malformation animal model for radiosurgery: the rete mirabile. AJNR 17:1451–1458

    CAS  Google Scholar 

  • DeSalles AAF, Melega WP, Lacan GL et al (2001) Radiosurgery with a 3 mm collimator in the subthalamic nucleus and substantia Nigra of the Vervet Monkey. J Neurosurg 95:990–997

    Article  CAS  Google Scholar 

  • DesRosiers C, Mendonca MS, Tyree V et al (2003) Use of the Leksell gamma knife for localized small field lens irradiation in rodents. Technol Cancer Res Treat 2:449–454

    PubMed  Google Scholar 

  • Duggan DM, Ding GX, Coffey CW 2nd, Kirby W et al (2007) Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: initial experience. Lung Cancer 56:77–88

    Article  PubMed  Google Scholar 

  • Fodstad H, Hariz M, Ljunggren B (1991) History of Clarke’s stereotactic instrument. Stereotact Funct Neurosurg 57:130–140

    Article  PubMed  CAS  Google Scholar 

  • Friedman WA, Bova FJ (1989) The university of Florida radiosurgery system. Surg Neurol 32:334–342

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A (2010) Pretreatment setup verification by cone beam CT in stereotactic radiosurgery: phantom study. J Appl Clin Med Phys 11:3162

    PubMed  Google Scholar 

  • Fuller CD, Thomas CR, Schwartz S, Golden N et al (2006) Method comparison of ultrasound and kilovoltage X-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol 51:4981–4993

    Article  PubMed  Google Scholar 

  • Fuss M, Salter BJ, Cavanaugh SX, Fuss C et al (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59:1245–1256

    Article  PubMed  Google Scholar 

  • Galerani AP, Grills I, Hugo G et al (2010) Dosimetric impact of online correction via cone-beam CT-based image guidance for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys 78:1571–1578

    Article  PubMed  Google Scholar 

  • Garland LH (1934) Carcinoma of the larynx. Calif West Med 41:289–295

    CAS  Google Scholar 

  • Ginzton EL, Mallory KB, Kaplan HS (1957) The Stanford medical linear accelerator: I. Design and development. Stanf Med Bull 15(3):123–140

    CAS  Google Scholar 

  • Goetsch SJ, Murphy BD, Schmidt R et al (1999) Physics of rotating gamma systems for stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 43:689–696

    Article  PubMed  CAS  Google Scholar 

  • Goss BW, Frighetto L, DeSalles AA et al (2003) Linear accelerator radiosurgery using 90 gray for essential trigeminal neuralgia: results and dose volume histogram analysis. Neurosurgery 53:823–828

    Article  PubMed  Google Scholar 

  • Graves EE, Hu Z, Chatterjee R et al (2007) Design and evaluation of a variable aperture collimator for conformal radiotherapy of small animals using a microCT scanner. Med Phys 34:4359–4367

    Article  PubMed  CAS  Google Scholar 

  • Grubbé EM (1933) Priority in the therapeutic use of X-rays. Radiology 21:156–162

    Google Scholar 

  • Guckenberger M, Baier K, Guenther I, Richter A et al (2007a) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69:294–301

    Article  PubMed  Google Scholar 

  • Guckenberger M, Meyer J, Wilbert J, Richter A et al (2007b) Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors. Radiother Oncol 83:57–64

    Article  PubMed  Google Scholar 

  • Guthrie BL, Adler JR (1991a) Computer-assisted pre-operative planning, interactive surgery, and frameless stereotaxy. In: Selman W (ed) Clinical neurosurgery, vol 38. Williams & Wilkins, Baltimore, pp 112–131

    Google Scholar 

  • Guthrie BL, Adler JR (1991b) Frameless stereotaxy: computer interactive neurosurgery. Neurol Surg 1:1–22

    Google Scholar 

  • Hacker FL, Kooy HM, Bellerive MR et al (1997) Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study. Int J Radiat Oncol Biol Phys 38:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Lulu BA (1995) A prototype device for linear accelerator-based extracranial radiosurgery. Acta Neurochir 63:40–43

    CAS  Google Scholar 

  • Hamilton AJ, Lulu BA, Fosmire H, Stea B et al (1995) Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 36:311–319

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Lulu BA, Fosmire H, Gossett L (1996) LINAC-based spinal stereotactic radiosurgery. Stereotact Funct Neurosurg 66:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hansen AT, Petersen JB, Høyer M (2006) Internal movement, set-up accuracy and margins for stereotactic body radiotherapy using a stereotactic body frame. Acta Oncol 45:948–952

    Article  PubMed  Google Scholar 

  • Hartmann GH, Schlegel W, Strum V et al (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Henschke U (1938) Über rotations bestrahlung (on rotation irradiation). Fortschr Geb Rontgenstr 58:456

    Google Scholar 

  • Herfarth KK, Debus J, Lohr F et al (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335

    Article  PubMed  CAS  Google Scholar 

  • Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–125

    Article  Google Scholar 

  • Hrbacek J, Lang S, Klöck S (2011) Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm. Int J Radiat Oncol Biol Phys 80:1228–1237

    Article  PubMed  Google Scholar 

  • Hugo G, Agazaryan N, Solberg TD (2002) The effects of tumor motion on planning and delivery of respiratory gated IMRT. Med Phys 30:1052–1066

    Article  Google Scholar 

  • Jahan R, Solberg TD, Lee D et al (2006) Stereotactic radiosurgery of the rete mirabile in swine: a longitudinal study of histopathological changes. Neurosurgery 58:551–558

    PubMed  Google Scholar 

  • Jahan R, Solberg TD, Lee D et al (2007) Arteriovenous malformation model for stereotactic radiosurgery research. Neurosurgery 61:152–159

    Article  PubMed  Google Scholar 

  • Jensen RL, Stone JL, Hayne RA (1996) Introduction of the human Horsley-Clarke stereotactic frame. Neurosurg 38:563–567

    CAS  Google Scholar 

  • Johnson LS, Milliken BD, Hadley SW, Pelizzari CA et al (1999) Initial clinical experience with a video-based patient positioning system. Int J Radiat Oncol Biol Phys 45:205–213

    Article  PubMed  CAS  Google Scholar 

  • Johnsson R, Strömqvist B, Axelsson P, Selvik G (1992) Influence of spinal immobilization on consolidation of posterolateral lumbosacral fusion. A roentgen stereophotogrammetric and radiographic analysis. Spine 17:16–21

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Illes J, Northway W (1995) A history of the department of radiology at Stanford university. AJR 164:753–760

    PubMed  CAS  Google Scholar 

  • Kamino Y, Takayama K, Kokubo M, Narita Y et al (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66:271–278

    Article  PubMed  Google Scholar 

  • Kamino Y, Miura S, Kokubo M et al (2007a) Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Med Phys 34:1797–1808

    Article  PubMed  Google Scholar 

  • Kamino Y, Tsukuda K, Kokubo M, Miura S et al (2007b) Development of a new concept automatic frequency controller for an ultrasmall C-band linear accelerator guide. Med Phys 34:3243–3248

    Article  PubMed  Google Scholar 

  • Kato A, Yoshimine T, Hayakawa T et al (1991) A frameless, armless navigational system for computer-assisted surgery. J Neurosurg 74:845–849

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jin JY, Walls N et al (2011) Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: a phantom study. Int J Radiat Oncol Biol Phys 79:1588–1596

    Article  PubMed  Google Scholar 

  • Kirschner M (1933) Die Punktionstechnik und die Elektrokoagulation es Ganglion Gasseri. Arch Klin Chir 176:581–620

    Google Scholar 

  • Kjellberg RN, Shintani A, Frantz AG, Kliman B (1968) Proton-beam therapy in acromegaly. N Eng J Med 279:689–695

    Article  Google Scholar 

  • Kohl U (1906) Stellvorrichtung für Röntgenröhren (device for X-ray tubes). DRP 192:571

    Google Scholar 

  • Kooy HM, Nedzi LA, Loeffler JS et al (1991) Treatment planning for stereotactic radiosurgery of intra-cranial lesions. Int J Radiat Oncol Biol Phys 21:683–693

    Article  PubMed  CAS  Google Scholar 

  • Kubo HD, Araki F (2002) Dosimetry and mechanical accuracy of the first rotating gamma system installed in North America. Med Phys 29:2497–2505

    Article  PubMed  Google Scholar 

  • Larsson B (1996) The history of radiosurgery: the early years (1950–1970). In: Kondziolka D (ed) Radiosurgery 1995, vol 1. Karger, Basel, pp 1–10

    Google Scholar 

  • Larsson B, Leksell L, Rexed B et al (1958) The high energy proton beam as a neurosurgical tool. Nature 182:1222–1223

    Article  PubMed  CAS  Google Scholar 

  • Larsson B, Leksell L, Rexed B (1963) The use of high-energy protons for cerebral surgery in man. Acta Chir Scand 125:1–5

    Google Scholar 

  • Larsson B, Lidén K, Sarby B (1974) Irradiation of small structures through the intact skull. Acta Radiol 13:512–534

    Article  CAS  Google Scholar 

  • Lawrence JH (1957) Proton irradiation of the pituitary. Cancer 10:795–798

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JH, Tobias CA, Born JL et al (1962) Heavy-particle irradiation in neoplastic and neurologic disease. J Neurosurg 19:717–722

    Article  PubMed  CAS  Google Scholar 

  • Lax I, Blomgren H, Naslund I et al (1994) Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol 33:677–683

    Article  PubMed  CAS  Google Scholar 

  • Leavitt DD, Gibbs FA, Heilbrum MP et al (1991) Dynamic field shaping to optimize stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 21:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Leksell L (1949) A stereotactic apparatus for intracerebral surgery. Acta Chir Scand 99:229–233

    Google Scholar 

  • Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Chirug Scand 102:316–319

    CAS  Google Scholar 

  • Leksell L (1971) Stereotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 137:311–314

    PubMed  CAS  Google Scholar 

  • Leksell L, Jernberg B (1980) Stereotaxis and tomography: a technical note. Acta Neurochir 52:1–7

    Article  CAS  Google Scholar 

  • Leksell L, Larsson B, Anderson B et al (1960) Lesions in the depth of the brain produced by a beam of high energy protons. Acta Radiol 54:251–264

    Article  PubMed  CAS  Google Scholar 

  • Leksell L, Lindquist C, Adler J et al (1987) A new fixation device for the Leksell stereotaxic system. J Neurosurg 66:626–629

    Article  PubMed  CAS  Google Scholar 

  • Letourneau D, Keller H, Sharpe MB, Jaffray DA (2007) Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy. Med Phys 34:1842–1849

    Article  PubMed  Google Scholar 

  • Levy RM (1998) Medical uses of linear accelerators. SLAC Report 526, pp 55–60

    Google Scholar 

  • Lidén K (1957) Physikalische Grundlagen für die Verwendung ionisierender Strahlung bei gezielter Hirnchirurgie. In: Olivecrona H, Tönnis W (eds) Handbuch der Neuochirurgie. Springer, Berlin, pp 199–211

    Google Scholar 

  • Lindgren-Turner J, Corsini L, Keane R, Smith N et al (2005) Position verification for intercranial stereotactic radiotherapy using 3D surface imaging. In: UK radiation oncology conference, April 11–13 (abstract)

    Google Scholar 

  • Lindquist C, Paddick I (2007) The Leksell gamma knife perfexion and comparisons with its predecessors. Neurosurg 61(suppl1):130–140

    Article  Google Scholar 

  • Llacer J (1997) Inverse radiation treatment planning using the dynamically penalized likelihood method. Med Phys 24:1751–1764

    Article  PubMed  CAS  Google Scholar 

  • Llacer J, Solberg TD, Promberger C (2001) Comparative behavior of the dynamically penalized likelihood algorithm in inverse radiation therapy planning. Phys Med Biol 46:2637–2663

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JS, Alexander E III, Siddon RL et al (1989) Stereotactic radiosurgery for intracranial arteriovenous malformations using a standard linear accelerator: rationale and technique. Int J Radiat Oncol Biol Phys 17:1327–1335

    Article  Google Scholar 

  • Lohr F, Debus J, Frank C et al (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527

    Article  PubMed  CAS  Google Scholar 

  • Loo BW, Chang JY, Dawson LA et al (2011) Stereotactic ablative radiotherapy: what’s in a name? Pract Radiat Oncol 1:38–39

    Article  Google Scholar 

  • Lotan Y, Stanfield J, Cho LC, Sherwood JB et al (2006) Efficacy of high dose per fraction radiation for implanted human prostate cancer in a nude mouse model. J Urol 175:1932–1936

    Article  PubMed  Google Scholar 

  • Lovelock DM, Hua C, Wang P et al (2005) Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging. Med Phys 32:2606–2614

    Article  PubMed  Google Scholar 

  • Lovelock DM, Wang P, Kirov A et al (2010) An accurate mechanical quality assurance procedure for a new high performance linac. Med Phys 37:3363 (abstract)

    Article  Google Scholar 

  • Lunsford LD, Maitz A, Lindner G (1987) First United States 201 source cobalt-60 gamma unit for radiosurgery. Appl Neurophysiol 50:253–256

    PubMed  CAS  Google Scholar 

  • Lutz W, Winston KR, Maleki N et al (1984) Stereotactic radiosurgery in the brain using a 6 MV linear accelerator. Int J Radiat Oncol Biol Phys 10(suppl 2):189

    Article  Google Scholar 

  • Lutz W, Winston KR, Maleki N (1986) A system for stereotactic radiosurgery with a linear accelerator and its performance evaluation. Int J Radiat Oncol Biol Phys 12(suppl. 1):100

    Article  Google Scholar 

  • Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381

    Article  PubMed  CAS  Google Scholar 

  • Matinfar M, Gray O, Iordachita I et al (2007) Small animal radiation research platform: imaging, mechanics, control and calibration. Med Image Comput Comput Assist Interv 10:926–934

    PubMed  Google Scholar 

  • Matinfar M, Ford E, Iordachita I et al (2009) Image-guided small animal radiation research platform: calibration of treatment beam alignment. Phys Med Biol 54:891–905

    Article  PubMed  Google Scholar 

  • Matoni HH (1924) Dependence of the strength of the biological reaction on the intensity of the roentgen rays of equal doses. Strahlentherapie 2:375

    Google Scholar 

  • McGarry RC, Papiez L, Williams M et al (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 63:1010–1015

    Article  PubMed  Google Scholar 

  • Medin PM, Solberg TD, DeSalles AAF et al (2002) Investigations of a minimally invasive method for treatment of spinal malignancies with linac stereotactic radiation therapy: accuracy and animal studies. Int J Radiat Oncol Biol Phys 52:1111–1122

    Article  PubMed  Google Scholar 

  • Medin PM, Foster RD, van der Kogel AJ et al (2011) Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model. Int J Radiat Oncol Biol Phys 79:226–232

    Article  PubMed  Google Scholar 

  • Meeks SL, Bova FJ, Buatti JM et al (2000) Clinical dosimetry considerations for a double-focused miniature multileaf collimator. In: Kondziolka D (ed) Radiosurgery 1999. Karger, Basel, pp 83–90

    Google Scholar 

  • Menke M, Hirschfeld F, Mack T (1994) Stereotactically guided fractionated radiotherapy: technical aspects. Int J Radiation Oncol Biol Phys 29:1147–1155

    Article  CAS  Google Scholar 

  • Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxis radiosurgery. Med Phys 24:857–866

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ, Adler JR Jr, Bodduluri M et al (2000) Image-guided radiosurgery for the spine and pancreas. Comput Aided Surg 5:278–288

    Article  PubMed  CAS  Google Scholar 

  • Mussen AT (1922) A cytoarchitectural atlas of the brain stem of the Macaccus rhesus. J Psychsol Neurol 29:451–518

    Google Scholar 

  • Nagata Y, Negoro Y, Aoki T et al (2002) Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys 52:1041–1046

    Article  PubMed  Google Scholar 

  • Nakagawa K, Aoki Y, Tago M, Ohtomo K (2003) Dynamic conical conformal radiotherapy using a C-arm-mounted accelerator: Dose distribution and clinical application. Int J Radiat Oncol Biol Phys 56:287–295

    Article  PubMed  Google Scholar 

  • Naqvi S, Schinkel C, Jiang Z et al (2010) Dosimetric characterization of a new prototype varian linear accelerator. Med Phys 37:3252 (abstract)

    Article  Google Scholar 

  • Narabayashi H (1952) Stereotaxic instrument for operation on the human basal ganglia. Psychiatr Neurol Jpn 54:669–671

    Google Scholar 

  • Nedzi LA, Kooy HM, Alexander E III et al (1991) Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 21:591–599

    Article  PubMed  CAS  Google Scholar 

  • Nedzi LA, Kooy HM, Alexander E III et al (1993) Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 25:859–869

    Article  PubMed  CAS  Google Scholar 

  • Negoro Y, Nagata Y, Aoki T et al (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys 50:889–898

    Article  PubMed  CAS  Google Scholar 

  • Olivier A, Peters TM, Bertrand G (1986) Stereotaxic systems and apparatus for use with MRI CT and DSA. Appl Neurophysiol 48:94–96

    Google Scholar 

  • Peignaux K, Truc G, Barillot I, Ammor A et al (2006) Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol 81:176–178

    Article  PubMed  Google Scholar 

  • Peng JL, Kahler D, Li JG et al (2010) Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys 37:5421–5433

    Article  PubMed  Google Scholar 

  • Pike B, Podgorsak EB, Peters TM, Pla M (1987a) Dose distributions in dynamic stereotactic radiosurgery. Med Phys 14:780–789

    Article  PubMed  CAS  Google Scholar 

  • Pike B, Peters TM, Podgorsak EB, Pla M (1987b) Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography. Appl Neuophysiol 50:33–38

    Google Scholar 

  • Podgorsak EB, Olivier A, Pla M et al (1987) Physical aspects of dynamic stereotactic radiosurgery. Appl Neurophysiol 50:263–268

    PubMed  CAS  Google Scholar 

  • Podgorsak EB, Olivier A, Pla M et al (1988) Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:115–126

    Article  PubMed  CAS  Google Scholar 

  • Regaud C (1922) Influence de la duree d’irradiation sur les effete determine’s dans le testicule par le radium. C R Soc Biol 86:787

    Google Scholar 

  • Regaud C (1929) Progress and limitation in the curative treatment of malignant neoplasms by radium. B J Radiol 2:461–476

    Article  Google Scholar 

  • Regaud C, Ferroux R (1927) Discordance des effets de rayons X, d’une part dans le testicule, par le peau, d’autre part dans la fractionnement de la dose. C R Soc Biol 97:431

    Google Scholar 

  • Rice RK, Hansen JL, Svensson GK, Siddon RL (1987) Measurements of dose distributions in small beams of 6 MV X-rays. Phys Med Biol 32:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerates fur stereotaktische Hirnoperationen (II. Modell). Acta Neurochir Suppl 3:308–37

    Google Scholar 

  • Roberts DW, Strohbehn JW, Hatch JF et al (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 64:545–549

    Google Scholar 

  • Ryken TC, Meeks SL, Traynelis V, Haller J et al (2001) Ultrasonographic guidance for spinal extracranial radiosurgery: technique and application for metastatic spinal lesions. Neurosurg Focus 11:1–6

    Article  Google Scholar 

  • Saha D, Watkins L, Yin Y et al (2010) An orthotopic lung tumor model for image-guided micro irradiation in rats. Rad Res 174:62–71

    Article  CAS  Google Scholar 

  • Sarby B (1974) Cerebral radiation surgery with narrow gamma beams. Acta Radiolog 13:425–445

    Article  CAS  Google Scholar 

  • Saunders WM, Winston KR, Siddon RL (1988) Radiosurgery for arteriovenous malformations of the brain using a standard linear accelerator: rationale and technique. Int J Radiat Oncol Biol Phys 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Schlegel W, Pastry O, Bortfeld T et al (1992) Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys 24:781–787

    Article  PubMed  CAS  Google Scholar 

  • Schlegel W, Pastyr O, Bortfeld T et al (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiother Oncol 29:197–204

    Article  PubMed  CAS  Google Scholar 

  • Schonberg RG (1987) Field uses of a portable 4/6 MeV electron linear accelerator. Nucl Instr Meth Phys Res B 25:797–800

    Article  Google Scholar 

  • Selvik G (1990) Roentgen stereophotogrammetric analysis. Acta Radiol 31:113–126

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Shirato H, Ogura S et al (2001) Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 51:304–310

    Article  PubMed  CAS  Google Scholar 

  • Shirato H, Shimizu S, Tadashi S et al (1999) Real time tumour-tracking radiotherapy. Lancet 353:1331–1332

    Article  PubMed  CAS  Google Scholar 

  • Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    Article  PubMed  CAS  Google Scholar 

  • Shiu AS, Kooy HM, Ewton JR et al (1997) Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 37:679–688

    Article  PubMed  CAS  Google Scholar 

  • Shiu AS, Chang EL, Ye J et al (2003) Near simultaneous computed tomography stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 57:605–613

    Article  PubMed  Google Scholar 

  • Siddon RL, Barth NH (1987) Stereotaxic localization of intracranial targets. Int J Radiat Oncol Biol Phys 13:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Smith ZA, De Salles AA, Frighetto L et al (2003) Dedicated linear accelerator radiosurgery for the treatment of trigeminal neuralgia. J Neurosurg 99:511–516

    Article  PubMed  Google Scholar 

  • Solberg TD, Medin PM, DeMarco JJ et al (1998) Technical considerations of linac radiosurgery for functional targets. J Radiosurg 1:115–127

    Article  Google Scholar 

  • Solberg TD, Fogg R, Selch MT et al (2000a) Conformal radiosurgery using a dedicated linac and micro multileaf collimator. In: Kondziolka D (ed) Radiosurgery 1999, Karger, Basel, pp 53–63

    Google Scholar 

  • Solberg TD, Paul TJ, Agazaryan N (2000b) Dosimetry of gated intensity modulated radiotherapy. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin, pp 286–288

    Chapter  Google Scholar 

  • Solberg TD, Boedeker KL, Fogg R et al (2001) Dynamic arc radiosurgery field shaping: a comparison with static conformal and non-coplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • Solberg TD, Baranowska-Kortylewicz J, Nearman J et al (2008) Correlation between tumor growth delay and expression of tumor and host VEGF, VEGFR2 and osteopontin in response to high dose per fraction radiotherapy. Int J Radiat Oncol Biol Phys 73:918–926

    Article  CAS  Google Scholar 

  • Song KH, Pidikiti R, Stojadinovic S et al (2010) An X-ray image guidance system for small animal stereotactic irradiation. Phys Med Biol 55:7345–7632

    Article  PubMed  CAS  Google Scholar 

  • Speigel EA, Wycis HT, Marks M, Lee AJ (1947) Stereotaxic apparatus for operations on the human brain. Science 106:349–350

    Article  Google Scholar 

  • Stojadinovic S, Low DA, Vicic V et al (2006) Progress toward a microradiation therapy small animal conformal irradiator. Med Phys 33:3834–3845

    Article  PubMed  Google Scholar 

  • Stojadinovic S, Low DA, Hope AJ et al (2007) MicroRT-Small animal conformal irradiator. Med Phys 34:4706–4716

    Article  PubMed  CAS  Google Scholar 

  • Sun B, DeSalles AAF, Medin P et al (1998) Reduction of hippocampal-kindled seizure activity in rats by stereotactic radiosurgery. Exp Neurol 154:691–695

    Article  PubMed  CAS  Google Scholar 

  • Svennson GK (1989) Quality assurance in stereotactic radiosurgery using a standard linear accelerator. Radiographics 9:169–182

    Google Scholar 

  • Takayama K, Mizowaki T, Kokubo M et al (2009) Initial validations for pursuing irradiation using a gimbals tracking system. Radiother Oncol 93:45–49

    Article  PubMed  Google Scholar 

  • Talairach J, He′caen M, David M, Monnier M, Ajuriaguerra J (1949) Recherches sur la coagulation therapeutique des structures sous-corticales chez l’homme. Rev Neurol 81:4–24

    Google Scholar 

  • Talairach J, de Ajuriaguerra J, David M (1952) Etudes stereotaxiques des structures encephaliques profondes chez l’homme technique, interet physiologique et therapeutique. Presse Med 28:605–609

    Google Scholar 

  • Tamaki N, Ehara K, Fujita K (2000) C-arm multi-axis rotation stereotactic linac radiosurgery system. J Radiosurg 3:21–27

    Article  Google Scholar 

  • Tan KK, Grzeszczuk R, Levin DN et al (1993) A frameless approach to neurosurgical planning based on retrospective patient-image registration. J Neurosurg 79:296–303

    Article  PubMed  CAS  Google Scholar 

  • Teschendorf W (1953) A simplified method of radiotherapy with a movable tube; rotational or pendular technic. Strahlentherapie 90:536–545

    PubMed  CAS  Google Scholar 

  • Tobias CA, Roberts JE, Lawrence JH et al (1955) Irradiation hypophysectomy and related studies using 340-MeV protons and 190-MeV deuterons with high energy proton beams. In: Proceedings of the international conference on the peaceful uses of atomic energy, Geneva 1995

    Google Scholar 

  • Tsai JS, Buck BA, Svennson GK et al (1991) Quality assurance in stereotactic radiosurgery using a standard linear accelerator. Int J Radiat Oncol Biol Phys 21:737–748

    Article  PubMed  CAS  Google Scholar 

  • Tyler AF (1918) Roentgenotherapy. CV Mosby, St. Louis

    Google Scholar 

  • UCLA Cancer Center Bulletin (1980) Stereotaxic cobalt unit being evaluated at UCLA. July 22

    Google Scholar 

  • Uematsu M, Fukui T, Shioda A, Tokumitsu H et al (1996) A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys 35:587–592

    Article  PubMed  CAS  Google Scholar 

  • Uematsu M, Shioda A, Tahara K et al (1998) Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer 82:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Uematsu M, Shioda A, Suda A, Tahara K et al (2000) Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit. Int J Radiat Oncol Biol Phys 48:443–448

    Article  PubMed  CAS  Google Scholar 

  • Walsh L, Stanfield JL, Cho LC, Chang CH et al (2006) Efficacy of ablative high-dose-per-fraction radiation for implanted human renal cell cancer in a nude mouse model. Eur Urol 50:795–800

    Article  PubMed  Google Scholar 

  • Wang LT, Solberg TD, Medin PM et al (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31:101–111

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Shiu A, Lii M, Woo S, Chang EL (2007) Automatic target localization and verification for on-line image-guided stereotactic body radiotherapy of the spine. Technol Cancer Res Treat 6:187–196

    PubMed  Google Scholar 

  • Wang J, Zhong R, Bai S et al (2010) Evaluation of positioning accuracy of four different immobilizations using cone-beam CT in radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:1274–1281

    Article  PubMed  Google Scholar 

  • Wells TH, Todd EM (1998) The Todd-Wells apparatus. In: Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional surgery. McGraw-Hill, New York, pp 95–99

    Google Scholar 

  • Wilson RR (1946) Radiological use of fast protons. Radiology 47:487–491

    PubMed  CAS  Google Scholar 

  • Wong J, Armour E, Kazanzides P et al (2008) High resolution, small animal irradiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71:1591–1599

    Article  PubMed  Google Scholar 

  • Worm ES, Hansen AT, Petersen JB et al (2010) Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung. Acta Oncol 49:1177–1183

    Article  PubMed  Google Scholar 

  • Wulf J, Hädinger U, Oppitz U et al (2000) Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol 57:225–236

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Geis P, Xing L et al (1999) Physical characteristics of a miniature multileaf collimator. Med Phys 26:65–70

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Yin FF, Kim JH (2003) A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 30:3052–3060

    Article  PubMed  Google Scholar 

  • Yenice KM, Lovelock DM, Hunt MA et al (2003) CT image-guided intensity modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Oncol Biol Phys 55:583–593

    Article  PubMed  Google Scholar 

  • Yu C, Taylor D et al (2004) An anthropomorphic phantom study of the accuracy of cyberknife spinal radiosurgery. Neurosurgery 55:1138–1146

    Article  PubMed  Google Scholar 

  • Zhou H, Rodriguez M, van der Haak F et al (2010) Development of a micro-computed tomography-based image-guided conformal radiotherapy system for small animals. Int J Radiat Oncol Biol Phys 78:297–305

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Solberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solberg, T.D., Siddon, R.L., Kavanagh, B. (2012). Historical Development of Stereotactic Ablative Radiotherapy. In: Lo, S., Teh, B., Lu, J., Schefter, T. (eds) Stereotactic Body Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_540

Download citation

  • DOI: https://doi.org/10.1007/174_2012_540

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25604-2

  • Online ISBN: 978-3-642-25605-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics