PET Physics and Instrumentation

  • Brad Kemp
Part of the Medical Radiology book series (MEDRAD)


In this chapter the basic principles of positron emission tomography (PET) imaging will be introduced. The physics of coincidence detection and the instrumentation used to acquire PET data will be presented. Finally, the factors that degrade PET image quality and the correction techniques employed to compensate for these factors will be reviewed.


Positron Emission Tomography Positron Emission Tomography Image Positron Emission Tomography Scanner Linear Attenuation Coefficient Coincidence Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Badawi RD, Dahlbom M (2005) NEC: some coincidences are more equivalent than others. J Nucl Med 46:1767–1768PubMedGoogle Scholar
  2. Beneditti SD, Cowan CE, Konneker WR et al (1950) On the angular distribution of two photon annihilation radiation. Phys Rev 77:205–212CrossRefGoogle Scholar
  3. Casey ME, Nutt R (1986) A multi-slice two-dimensional BGO detector system for PET. IEEE Trans Nucl Sci 33:760–763CrossRefGoogle Scholar
  4. Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 47:1735–1745PubMedGoogle Scholar
  5. Cherry SR, Dahlbom M, Hoffman EJ (1991) 3D PET using a conventional multislice tomograph without septa. J Comput Assis Tomogr 15:655–668CrossRefGoogle Scholar
  6. Humm JL, Rozenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30:1574–1594PubMedCrossRefGoogle Scholar
  7. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 49:462–470PubMedCrossRefGoogle Scholar
  8. Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179PubMedCrossRefGoogle Scholar
  9. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799PubMedCrossRefGoogle Scholar
  10. Lewellen TK (1998) Time-of-flight PET. Semin Nucl Med 28:268–275PubMedCrossRefGoogle Scholar
  11. Pichler BJ, Judenhofer MS, Catana C, Walton JH et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647PubMedGoogle Scholar
  12. Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET sensitivity: relating count rates to image-signal-to-noise ratio using noise equivalent counts. IEEE Trans Nucl Sci 37:783–788CrossRefGoogle Scholar
  13. Ter Pogossian MM, Mullani NA, Ficke DC (1981) Photon time-of-flight assisted positron emission tomography. J Comput Assist Tomogr 5:227–239CrossRefGoogle Scholar
  14. Tomitani T (1981) Image-reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci 28:4582–4589CrossRefGoogle Scholar
  15. Townsend DW, Geissbuhler A, Defrise M et al (1991) Fully 3-dimensional reconstruction for a PET camera with retractable septa. IEEE Trans Med Imag 10:505–512CrossRefGoogle Scholar
  16. Wong W-H, Uribe J, Hicks K, Hu G (1995) An analog decoding BGO block detector using circular photomultipliers. IEEE Trans Nucl Sci 42:1095–1101CrossRefGoogle Scholar

Further Reading

  1. Bendriem B, Townsend DW (1998) The theory and practice of 3D PET. Kluwer, DordrechtGoogle Scholar
  2. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine, 3rd edn. W.B. Saunders, New YorkGoogle Scholar
  3. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations