Skip to main content

Radiation Dose Optimisation of Cardiac and Vascular MDCT in Adults and Paediatric Patients

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2243 Accesses

Abstract

CT Angiography (CTA) is now able to provide excellent vascular diagnosis on almost all vessels larger than 1 or 2 mm, including the coronary arteries. The radiation dose from such examinations is of concern because it may be as high as 30 mSv for cardiac CTA (CCTA). Strategies for optimising the radiation dose from CTA and CCTA are various and include the recent developments of new technologies, new software solutions, prospective ECG triggering, strict control of the heart rate, low-tube potential, tube current modulation, adaptive shielding and organ protection device. Effective dose is widely quoted in the literature but the methods used in its calculation are often inadequately documented, and poorly understood. The most common method used to calculate effective dose involves the multiplication of dose length product (DLP) by a conversion factor. However, if a different conversion factor is used this can lead to dramatic differences in the effective dose that is presented. The most common conversion factors used are the “chest” CT conversion factors published by the European Commission (0.014 or 0.017). However, these conversion factors do not take into account the 2007 changes in the ICRP tissue weighting factors and underestimate effective dose. Scanner-specific conversion factors have been calculated but are rarely used in the published literature. Here we discuss the factors required to select an appropriate conversion factor in CCTA and the importance of quoting dose length product, conversion factor and effective dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASIR:

Adaptative statistical iterative reconstruction

AEC:

Automatic exposure control

BMI:

Body mass index

CNR:

Contrast-to-noise ratio

CCTA:

Cardiac CT angiography

CTA:

CT angiography

CTDI:

Computed tomography dose index

CTDIvol:

CTDI volume

CTDIw:

Weighted CTDI

DE-DS CT:

Dual-energy-dual-source CT

DLP:

Dose length product

DSA:

Digital subtraction angiography

EVAR:

Endovascular aneurysm repair

FBP:

Filtered back projection

MDCT:

Multi-detector row CT

PAOD:

Peripheral aortic occlusive disease

SNR:

Signal-to-noise ratio

1 mm-CT:

Image of the abdomen and pelvis

References

Part 1: Cardiac CT Angiography

  • Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR 186(6 Suppl 2):S387–S390

    Article  PubMed  Google Scholar 

  • Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31(3):340–346

    Google Scholar 

  • Adler G, Meille L, Rohnean A, Sigal-Cinqualbre A, Capderou A, Paul JF (2010) Robustness of end-systolic reconstructions in coronary dual-source CT angiography for high heart rate patients. Eur Radiol 20:1118–1123

    Article  PubMed  Google Scholar 

  • Arnoldi E, Johnson TR, Rist C et al (2009) Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques. Eur Radiol 19(9):2147–2155

    Article  PubMed  Google Scholar 

  • Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39(7):668–676

    Article  PubMed  Google Scholar 

  • Blankstein R, Shah A, Pale R et al (2009) Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am J Cardiol 103(8):1168–1173

    Article  PubMed  Google Scholar 

  • Buechel RR, Husmann L, Herzog BA et al (2011) Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering feasibility in a large population. J Am Coll Cardiol 57(3):332–336

    Article  PubMed  Google Scholar 

  • Cademartiri F, Mollet NR, Runza G et al (2006) Improving diagnostic accuracy of MDCT coronary angiography in patients with mild heart rhythm irregularities using ECG editing. AJR 186(3):634–638

    Article  PubMed  Google Scholar 

  • Cademartiri F, Maffei E, Palumbo AA et al (2008) Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 18(3):576–583

    Article  PubMed  Google Scholar 

  • Earls JP (2009) How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr 3(1):45–51

    Article  PubMed  Google Scholar 

  • Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753

    Article  PubMed  Google Scholar 

  • Efstathopoulos EP, Kelekis NL, Pantos I et al (2009) Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography. Phys Med Biol 54(17):5209–5222

    Article  PubMed  CAS  Google Scholar 

  • Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323

    Article  PubMed  CAS  Google Scholar 

  • Fink C, Krissak R, Henzler T, Lechel U, Brix G, Takx RA, Nance JW, Abro JA, Schoenberg SO, Schoepf UJ (2011a) Radiation dose at coronary CT angiography: second-generation dual-source CT versus single-source 64-MDCT and first-generation dual-source CT. Am J Roentgenol 196(5):W550–W557

    Article  Google Scholar 

  • Foley SJ, McEntee MF, Achenbach S, Brennan PC, Rainford LS, Dodd JD (2011) Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding. AJR 197:367–373

    Article  PubMed  Google Scholar 

  • Gilkeson RC, Ciancibello L, Zahka K (2003) Pictorial essay multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR 180(4):973–980

    PubMed  CAS  Google Scholar 

  • Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310

    Article  PubMed  Google Scholar 

  • Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507

    Article  PubMed  CAS  Google Scholar 

  • Huda W, Shoepf UJ, Abro JA, Mah E, Costello P (2011) Radiation-related cancer risks in a clinical patient population undergoing cardiac CT. AJR 196:W159–W165

    Article  PubMed  Google Scholar 

  • Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13(12):2560–2566

    Article  PubMed  CAS  Google Scholar 

  • Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, Earls JP (2010) Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR 194:933–937

    Article  PubMed  Google Scholar 

  • Lee T, Tsai IC, Fu YC et al (2006) Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility. Pediatr Radiol 36(12):1273–1282

    Article  PubMed  Google Scholar 

  • Lee AB, Nandurkar D, Schneider-Kolsky ME, Crossett M, Seneviratne SK, Cameron JD, Troupis JM (2011) Coronary image quality of 320-MDCT in patients with heart rates above 65 beats per minute: preliminary experience. Am J Roentgenol 196(6):W729–W735 Jun

    Article  Google Scholar 

  • Leschka S, Kim CH, Baumueller S, Stolzmann P, Scheffel H, Marincek B, Alkadhi H (2010) Scan length adjustment of CT coronary angiography using the calcium scoring scan: effect on radiation dose. AJR 194:W272–W277

    Article  PubMed  Google Scholar 

  • Neefjes LA, Dharampal AS, Rossi A, Nieman K, Weustink AC, Dijkshoorn ML, Ten Kate GJ, Dedic A, Papadopoulou SL, van Straten M, Cademartiri F, Krestin GP, de Feyter PJ, Mollet NR (2011) Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology 261:779–786

    Google Scholar 

  • Paul JF (2011) Individually adapted coronary 64-slice CT angiography based on precontrast attenuation values, using different kVp and tube current settings: evaluation of image quality. Int J Cardiovasc Imag 21:165–176

    Google Scholar 

  • Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17(8):2028–2037

    Article  PubMed  Google Scholar 

  • Paul JF, Abada HT, Sigal-Cinqualbre A (2004) Should low-kilovoltage chest CT protocols be the rule for pediatric patients? AJR 183(4):1172; author reply

    Google Scholar 

  • Paul JF, Rohnean A, Sigal-Cinqualbre A (2010) Multidetector CT for congenital heart patients: what a paediatric radiologist should know. Pediatr Radiol 40(6):869–875

    Article  PubMed  Google Scholar 

  • Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Google Scholar 

  • Pflederer T, Jakstat J, Marwan M et al (2010) Radiation exposure and image quality in staged low-dose protocols for coronary dual-source CT angiography: a randomized comparison. Eur Radiol 20(5):1197–1206

    Google Scholar 

  • Reid J, Gamberoni J, Dong F, Davros W (2010) Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: is it best to base parameter selection on object circumference? AJR 195(4):1015–1020

    Google Scholar 

  • Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, Warren BH, Caldwell JH (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437

    Article  PubMed  Google Scholar 

  • Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231(1):169–174

    Article  PubMed  Google Scholar 

  • Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21(8):1635–1642

    Google Scholar 

  • Tatsugami F, Husmann L, Herzog BA et al (2009) Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR 192(3):635–638

    Article  PubMed  Google Scholar 

  • Torres FS, Jeddiyan S, Jiménez-Juan L, Nguyen ET (2011) Beta-blockers to control heart rate during coronary CT angiography. Radiology 259(2):615–616. May 2011, author reply 616–617

    Google Scholar 

  • Tsai IC, Lee T, Chen MC et al (2007) Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 37:818–825

    Google Scholar 

  • Tubiana M (2005) Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Academie des Sciences (Paris) and of the Academie Nationale de Medecine. Int J Radiat Oncol Biol Phys 63(2):317–319

    Article  PubMed  Google Scholar 

  • Vastel-Amzallag C, Le Bret E, Paul JF et al (2011) Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of fallot. J Thor Cardiovasc Surg 142(1):120–126

    Google Scholar 

Part 2: Radiation Dose Optimization in CT Angiography (CTA) for Aorta And Peripheral Vessels

  • Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C, Macari M (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms–initial observations. Radiology 249:692–700

    Article  PubMed  Google Scholar 

  • Fraioli F, Catalano C, Napoli A, Francone M, Venditti F, Danti M, Pediconi F, Passariello R (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16:137–146

    Article  PubMed  Google Scholar 

  • Golzarian J, Valenti D (2006) Endoleakage after endovascular treatment of abdominal aortic aneurysms: diagnosis, significance and treatment. Eur Radiol 16:2849–2857

    Article  PubMed  Google Scholar 

  • Golzarian J, Dussaussois L, Abada HT, Gevenois PA, Van Gansbeke D, Ferreira J, Struyven J (1998) Helical CT of aorta after endoluminal stent-graft therapy: value of biphasic acquisition. Am J Roentgenol 171:329–331

    CAS  Google Scholar 

  • Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771

    Article  Google Scholar 

  • Iezzi R, Cotroneo AR, Filippone A, Di Fabio F, Quinto F, Colosimo C, Bonomo L (2006) Multidetector CT in abdominal aortic aneurysm treated with endovascular repair: are unenhanced and delayed phase enhanced images effective for endoleak detection? Radiology 241:915–921

    Article  PubMed  Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  • Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  • Macari M, Chandarana H, Schmidt B, Lee J, Lamparello P, Babb J (2006) Abdominal aortic aneurysm: can the arterial phase at CT evaluation after endovascular repair be eliminated to reduce radiation dose? Radiology 241:908–914

    Article  PubMed  Google Scholar 

  • Manousaki E, Perisinakis K, Karantanas A, Tsetis D (2011) MDCT angiography assessment of renal artery in-stent restenosis: can we reduce the radiation exposure burden? A feasibility study. Eur J Radiol 79:224–231

    Article  PubMed  Google Scholar 

  • Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, DeLong DM, Yoshizumi TT, Schindera ST (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779

    Article  PubMed  Google Scholar 

  • Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E, Venstermans C, Termote JL (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223

    Article  PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y, Liu D, Nakaura T, Tamura Y, Yamashita Y (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. Am J Roentgenol 187:W490–W497

    Article  Google Scholar 

  • Sahani DV, Kalva SP, Hahn PF, Saini S (2007) 16-MDCT angiography in living kidney donors at various tube potentials: impact on image quality and radiation dose. Am J Roentgenol 188:115–120

    Article  Google Scholar 

  • Sawhney R, Kerlan RK, Wall SD, Chuter TA, Ruiz DE, Canto CJ, Laberge JM, Reilly LM, Yee J, Wilson MW, Jean-Claude J, Faruqi RM, Gordon RL (2001) Analysis of initial CT findings after endovascular repair of abdominal aortic aneurysm. Radiology 220:157–160

    PubMed  CAS  Google Scholar 

  • Schindera ST, Nelson RC, Yoshizumi T, Toncheva G, Nguyen G, DeLong DM, Szucs-Farkas Z (2009a) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002

    Article  PubMed  Google Scholar 

  • Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, Szucs-Farkas Z (2009b) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655

    Article  PubMed  Google Scholar 

  • Schindera ST, Tock I, Marin D, Nelson RC, Raupach R, Hagemeister M, von Allmen G, Vock P, Szucs-Farkas Z (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256:528–535

    Article  PubMed  Google Scholar 

  • Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, Schmidt B, Marincek B, Alkadhi H, Schertler T (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    Article  PubMed  Google Scholar 

  • Szucs-Farkas Z, Semadeni M, Bensler S, Patak MA, von Allmen G, Vock P, Schindera ST (2009) Endoleak detection with CT angiography in an abdominal aortic aneurysm phantom: effect of tube energy, simulated patient size, and physical properties of endoleaks. Radiology 251:590–598

    Article  PubMed  Google Scholar 

  • Szucs-Farkas Z, Bensler S, Torrente JC, Cullmann JL, Vock P, Schindera ST (2011) Nonlinear three-dimensional noise filter with low-dose CT angiography: effect on the detection of small high-contrast objects in a phantom model. Radiology 258:261–269

    Article  PubMed  Google Scholar 

  • Utsunomiya D, Oda S, Funama Y, Awai K, Nakaura T, Yanaga Y, Hirai T, Yamashita Y (2010) Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol 20:2758–2765

    Article  PubMed  Google Scholar 

  • Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

Part 3: Conversion Factors Specific to CCTA

  • Berrington de González A, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2017

    Google Scholar 

  • Bongartz G, Golding S, Jurik A, Leonardi M, van Meerten E v P, Geleijns J et al (2000) European guidelines on quality criteria for computed tomography. EUR 16262. Luxembourg

    Google Scholar 

  • Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Rodríguez R et al (2004) European field survey of the clinical application of CT with a focus on the evaluation of CT protocols and assessment of patient dose. In: European guidelines for multislice computed tomography funded by the European Commission 2004: contract number FIGMCT2000-20078-CT-TIP. European Commission, Brussels

    Google Scholar 

  • Brenner DJ (2008) Effective dose: a flawed concept that could and should be replaced. British J Radiol 81(967):521–523

    Article  CAS  Google Scholar 

  • Budoff MJ, Gupta M (2010) Radiation exposure from cardiac imaging procedures: do the risks outweigh the benefits? J Am Coll Cardiol 56(9):712–714

    Article  PubMed  Google Scholar 

  • Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167(4):396–416

    Article  PubMed  CAS  Google Scholar 

  • Christner J, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR 194(4):881–889

    Article  PubMed  Google Scholar 

  • Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effectve dose from dose-length product. Radiology 257(1):158–166

    Article  PubMed  Google Scholar 

  • Einstein AJ, Elliston CD, Arai AE, Chen MY, Mather R, N. PGD et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254(3):698–706

    Article  PubMed  Google Scholar 

  • Faletra FF, D’Angeli I, Klersy C, Averaimo M, Klimusina J, Pasotti E et al (2010) Estimates of lifetime attributable risk of cancer after a single radiation exposure from 64-slice computed tomographic coronary angiography. Heart 96(12):927–932

    Article  PubMed  CAS  Google Scholar 

  • Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857

    Article  PubMed  CAS  Google Scholar 

  • Fink C, Krissak R, Henzler T, Lechel U, Brix G, Takx RAP et al (2011b) Radiation dose at coronary CT angiography: second-generation dual-source CT versus single-source 64-MDCT and first generation dual-source CT. AJR 196(5):550–557

    Article  Google Scholar 

  • Geleijns J, Joemai RMS, Dewey M, de Roos A, Zankl M, Cantera AC et al (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR 196(5):1126–1132

    Article  PubMed  Google Scholar 

  • Goetti R, Leschka S, Boschung M, Mayer S, Wyss C, Stolzmann P et al (2011) Radiation doses from phantom measurements at high-pitch dual-source computed tomography coronary angiography. Eur J Radiol. [Epub ahead of print]

    Google Scholar 

  • Goldman LW (2007) Principles of CT: radiation dose and image quality. J Nucl Med Technol 35(4):213–225, 226–228

    Google Scholar 

  • Gosling O, Loader R, Venables P, Rowles N, Morgan-hughes G, Cardiac RC (2010) CT, are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin Radiol 65(12):1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5(4):198–224

    Article  PubMed  Google Scholar 

  • Huda W, Mettler FA (2011) Volume CT dose index and dose-length product displayed during CT: what good are they? Radiation 258:236–242

    Google Scholar 

  • Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248(3):995–1003

    Google Scholar 

  • Huda W, Tipnis S, Sterzik A, Schoepf UJ (2010) Computing effective dose in cardiac CT. Phys Med Biol 55(13):3675–3684

    Article  PubMed  Google Scholar 

  • ICRP (1977) Recommendations of the ICRP. ICRP Publication 26. Ann. ICRP. 1(3)

    Google Scholar 

  • ICRP (1990) Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 1991. 21(1–3):1–201

    Google Scholar 

  • ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 37(2–4):1–332

    Google Scholar 

  • Jacobi W (1975) The concept of the effective dose—a proposal for the combination of organ doses. Radiat Environ Biophys 12(2):101–109

    Article  PubMed  CAS  Google Scholar 

  • Ka J, Shrimpton PC, Geleijns J, Panzer W, Tosi G (1999) Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isotopes 50(1):165–172

    Article  Google Scholar 

  • Khan A, Nasir K, Khosa F, Saghir A, Sarwar S, Clouse ME (2011) Prospective gating with 320-MDCT angiography: effect of volume scan length on radiation dose. AJR 196(2):407–411

    Article  PubMed  Google Scholar 

  • Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259(3):862–874

    Article  PubMed  Google Scholar 

  • Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80(956):639–647

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Koshida K, Suzuki M, Shimono T, Yamamoto T, Matsui O (2009) Effective dose evaluation of multidetector CT examinations: influence of the ICRP recommendation in 2007. Eur Radiol 19(12):2855–2861

    Article  PubMed  Google Scholar 

  • McCollough CH, Leng S, Yu L, Cody DD, Boone JM, Mcnitt-gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259(2):311–316

    Article  PubMed  Google Scholar 

  • Mori S, Nishizawa K, Ohno M, Endo M (2006) Conversion factor for CT dosimetry to assess patient dose using a 256-slice CT scanner. British J Radiol 79(947):888–892

    Article  CAS  Google Scholar 

  • Nuclear Regulatory Commission (2006) Beir VII : health risks from exposure to low levels of ionizing radiation. National Academies Press, Washington DC

    Google Scholar 

  • Perisinakis K, Seimenis I, Tzedakis A, Papadakis AE, Damilakis J (2010) Individualized assessment of radiation dose in patients undergoing coronary computed tomographic angiography with 256-slice scanning. Circulation 122(23):2394–2402

    Article  PubMed  Google Scholar 

  • Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154(2):178–186

    Article  PubMed  CAS  Google Scholar 

  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64

    Article  PubMed  CAS  Google Scholar 

  • Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65(11):859–867

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton P (2004) Assessment of patient dose in CT. In: European guidelines for multislice computed tomography funded by the European Commission, contract number FIGMCT2000-20078-CT-TIP. European Commission, Luxembourg, p 2004

    Google Scholar 

  • Williams MC, Maclachlan DS, Misradraee S, Newby DE, Weir NW (2012) Computed tomography coronary angiography (CTCA) radiation dose: a systematic review of the application of conversion factors. Abstract B-0399. European Congress of Radiology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Tack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paul, J.F., Keyzer, C., Williams, M., Tack, D. (2011). Radiation Dose Optimisation of Cardiac and Vascular MDCT in Adults and Paediatric Patients. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_509

Download citation

  • DOI: https://doi.org/10.1007/174_2011_509

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics