Radiation Dose Optimisation of Cardiac and Vascular MDCT in Adults and Paediatric Patients

  • Jean François Paul
  • Caroline Keyzer
  • Michelle Williams
  • Denis Tack
Part of the Medical Radiology book series (MEDRAD)


CT Angiography (CTA) is now able to provide excellent vascular diagnosis on almost all vessels larger than 1 or 2 mm, including the coronary arteries. The radiation dose from such examinations is of concern because it may be as high as 30 mSv for cardiac CTA (CCTA). Strategies for optimising the radiation dose from CTA and CCTA are various and include the recent developments of new technologies, new software solutions, prospective ECG triggering, strict control of the heart rate, low-tube potential, tube current modulation, adaptive shielding and organ protection device. Effective dose is widely quoted in the literature but the methods used in its calculation are often inadequately documented, and poorly understood. The most common method used to calculate effective dose involves the multiplication of dose length product (DLP) by a conversion factor. However, if a different conversion factor is used this can lead to dramatic differences in the effective dose that is presented. The most common conversion factors used are the “chest” CT conversion factors published by the European Commission (0.014 or 0.017). However, these conversion factors do not take into account the 2007 changes in the ICRP tissue weighting factors and underestimate effective dose. Scanner-specific conversion factors have been calculated but are rarely used in the published literature. Here we discuss the factors required to select an appropriate conversion factor in CCTA and the importance of quoting dose length product, conversion factor and effective dose.


Radiation Dose Effective Dose Conversion Factor Tube Voltage Dose Length Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adaptative statistical iterative reconstruction


Automatic exposure control


Body mass index


Contrast-to-noise ratio


Cardiac CT angiography


CT angiography


Computed tomography dose index


CTDI volume


Weighted CTDI


Dual-energy-dual-source CT


Dose length product


Digital subtraction angiography


Endovascular aneurysm repair


Filtered back projection


Multi-detector row CT


Peripheral aortic occlusive disease


Signal-to-noise ratio

1 mm-CT

Image of the abdomen and pelvis


Part 1: Cardiac CT Angiography

  1. Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR 186(6 Suppl 2):S387–S390PubMedCrossRefGoogle Scholar
  2. Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31(3):340–346Google Scholar
  3. Adler G, Meille L, Rohnean A, Sigal-Cinqualbre A, Capderou A, Paul JF (2010) Robustness of end-systolic reconstructions in coronary dual-source CT angiography for high heart rate patients. Eur Radiol 20:1118–1123PubMedCrossRefGoogle Scholar
  4. Arnoldi E, Johnson TR, Rist C et al (2009) Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques. Eur Radiol 19(9):2147–2155PubMedCrossRefGoogle Scholar
  5. Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39(7):668–676PubMedCrossRefGoogle Scholar
  6. Blankstein R, Shah A, Pale R et al (2009) Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am J Cardiol 103(8):1168–1173PubMedCrossRefGoogle Scholar
  7. Buechel RR, Husmann L, Herzog BA et al (2011) Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering feasibility in a large population. J Am Coll Cardiol 57(3):332–336PubMedCrossRefGoogle Scholar
  8. Cademartiri F, Mollet NR, Runza G et al (2006) Improving diagnostic accuracy of MDCT coronary angiography in patients with mild heart rhythm irregularities using ECG editing. AJR 186(3):634–638PubMedCrossRefGoogle Scholar
  9. Cademartiri F, Maffei E, Palumbo AA et al (2008) Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 18(3):576–583PubMedCrossRefGoogle Scholar
  10. Earls JP (2009) How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr 3(1):45–51PubMedCrossRefGoogle Scholar
  11. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753PubMedCrossRefGoogle Scholar
  12. Efstathopoulos EP, Kelekis NL, Pantos I et al (2009) Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography. Phys Med Biol 54(17):5209–5222PubMedCrossRefGoogle Scholar
  13. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323PubMedCrossRefGoogle Scholar
  14. Fink C, Krissak R, Henzler T, Lechel U, Brix G, Takx RA, Nance JW, Abro JA, Schoenberg SO, Schoepf UJ (2011a) Radiation dose at coronary CT angiography: second-generation dual-source CT versus single-source 64-MDCT and first-generation dual-source CT. Am J Roentgenol 196(5):W550–W557CrossRefGoogle Scholar
  15. Foley SJ, McEntee MF, Achenbach S, Brennan PC, Rainford LS, Dodd JD (2011) Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding. AJR 197:367–373PubMedCrossRefGoogle Scholar
  16. Gilkeson RC, Ciancibello L, Zahka K (2003) Pictorial essay multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR 180(4):973–980PubMedGoogle Scholar
  17. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310PubMedCrossRefGoogle Scholar
  18. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507PubMedCrossRefGoogle Scholar
  19. Huda W, Shoepf UJ, Abro JA, Mah E, Costello P (2011) Radiation-related cancer risks in a clinical patient population undergoing cardiac CT. AJR 196:W159–W165PubMedCrossRefGoogle Scholar
  20. Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13(12):2560–2566PubMedCrossRefGoogle Scholar
  21. Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, Earls JP (2010) Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR 194:933–937PubMedCrossRefGoogle Scholar
  22. Lee T, Tsai IC, Fu YC et al (2006) Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility. Pediatr Radiol 36(12):1273–1282PubMedCrossRefGoogle Scholar
  23. Lee AB, Nandurkar D, Schneider-Kolsky ME, Crossett M, Seneviratne SK, Cameron JD, Troupis JM (2011) Coronary image quality of 320-MDCT in patients with heart rates above 65 beats per minute: preliminary experience. Am J Roentgenol 196(6):W729–W735 JunCrossRefGoogle Scholar
  24. Leschka S, Kim CH, Baumueller S, Stolzmann P, Scheffel H, Marincek B, Alkadhi H (2010) Scan length adjustment of CT coronary angiography using the calcium scoring scan: effect on radiation dose. AJR 194:W272–W277PubMedCrossRefGoogle Scholar
  25. Neefjes LA, Dharampal AS, Rossi A, Nieman K, Weustink AC, Dijkshoorn ML, Ten Kate GJ, Dedic A, Papadopoulou SL, van Straten M, Cademartiri F, Krestin GP, de Feyter PJ, Mollet NR (2011) Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology 261:779–786Google Scholar
  26. Paul JF (2011) Individually adapted coronary 64-slice CT angiography based on precontrast attenuation values, using different kVp and tube current settings: evaluation of image quality. Int J Cardiovasc Imag 21:165–176Google Scholar
  27. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17(8):2028–2037PubMedCrossRefGoogle Scholar
  28. Paul JF, Abada HT, Sigal-Cinqualbre A (2004) Should low-kilovoltage chest CT protocols be the rule for pediatric patients? AJR 183(4):1172; author replyGoogle Scholar
  29. Paul JF, Rohnean A, Sigal-Cinqualbre A (2010) Multidetector CT for congenital heart patients: what a paediatric radiologist should know. Pediatr Radiol 40(6):869–875PubMedCrossRefGoogle Scholar
  30. Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249Google Scholar
  31. Pflederer T, Jakstat J, Marwan M et al (2010) Radiation exposure and image quality in staged low-dose protocols for coronary dual-source CT angiography: a randomized comparison. Eur Radiol 20(5):1197–1206Google Scholar
  32. Reid J, Gamberoni J, Dong F, Davros W (2010) Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: is it best to base parameter selection on object circumference? AJR 195(4):1015–1020Google Scholar
  33. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, Warren BH, Caldwell JH (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437PubMedCrossRefGoogle Scholar
  34. Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231(1):169–174PubMedCrossRefGoogle Scholar
  35. Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21(8):1635–1642Google Scholar
  36. Tatsugami F, Husmann L, Herzog BA et al (2009) Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR 192(3):635–638PubMedCrossRefGoogle Scholar
  37. Torres FS, Jeddiyan S, Jiménez-Juan L, Nguyen ET (2011) Beta-blockers to control heart rate during coronary CT angiography. Radiology 259(2):615–616. May 2011, author reply 616–617Google Scholar
  38. Tsai IC, Lee T, Chen MC et al (2007) Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 37:818–825Google Scholar
  39. Tubiana M (2005) Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Academie des Sciences (Paris) and of the Academie Nationale de Medecine. Int J Radiat Oncol Biol Phys 63(2):317–319PubMedCrossRefGoogle Scholar
  40. Vastel-Amzallag C, Le Bret E, Paul JF et al (2011) Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of fallot. J Thor Cardiovasc Surg 142(1):120–126Google Scholar

Part 2: Radiation Dose Optimization in CT Angiography (CTA) for Aorta And Peripheral Vessels

  1. Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C, Macari M (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms–initial observations. Radiology 249:692–700PubMedCrossRefGoogle Scholar
  2. Fraioli F, Catalano C, Napoli A, Francone M, Venditti F, Danti M, Pediconi F, Passariello R (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16:137–146PubMedCrossRefGoogle Scholar
  3. Golzarian J, Valenti D (2006) Endoleakage after endovascular treatment of abdominal aortic aneurysms: diagnosis, significance and treatment. Eur Radiol 16:2849–2857PubMedCrossRefGoogle Scholar
  4. Golzarian J, Dussaussois L, Abada HT, Gevenois PA, Van Gansbeke D, Ferreira J, Struyven J (1998) Helical CT of aorta after endoluminal stent-graft therapy: value of biphasic acquisition. Am J Roentgenol 171:329–331Google Scholar
  5. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771CrossRefGoogle Scholar
  6. Iezzi R, Cotroneo AR, Filippone A, Di Fabio F, Quinto F, Colosimo C, Bonomo L (2006) Multidetector CT in abdominal aortic aneurysm treated with endovascular repair: are unenhanced and delayed phase enhanced images effective for endoleak detection? Radiology 241:915–921PubMedCrossRefGoogle Scholar
  7. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  8. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397PubMedCrossRefGoogle Scholar
  9. Macari M, Chandarana H, Schmidt B, Lee J, Lamparello P, Babb J (2006) Abdominal aortic aneurysm: can the arterial phase at CT evaluation after endovascular repair be eliminated to reduce radiation dose? Radiology 241:908–914PubMedCrossRefGoogle Scholar
  10. Manousaki E, Perisinakis K, Karantanas A, Tsetis D (2011) MDCT angiography assessment of renal artery in-stent restenosis: can we reduce the radiation exposure burden? A feasibility study. Eur J Radiol 79:224–231PubMedCrossRefGoogle Scholar
  11. Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, DeLong DM, Yoshizumi TT, Schindera ST (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779PubMedCrossRefGoogle Scholar
  12. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E, Venstermans C, Termote JL (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223PubMedCrossRefGoogle Scholar
  13. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  14. Nakayama Y, Awai K, Funama Y, Liu D, Nakaura T, Tamura Y, Yamashita Y (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. Am J Roentgenol 187:W490–W497CrossRefGoogle Scholar
  15. Sahani DV, Kalva SP, Hahn PF, Saini S (2007) 16-MDCT angiography in living kidney donors at various tube potentials: impact on image quality and radiation dose. Am J Roentgenol 188:115–120CrossRefGoogle Scholar
  16. Sawhney R, Kerlan RK, Wall SD, Chuter TA, Ruiz DE, Canto CJ, Laberge JM, Reilly LM, Yee J, Wilson MW, Jean-Claude J, Faruqi RM, Gordon RL (2001) Analysis of initial CT findings after endovascular repair of abdominal aortic aneurysm. Radiology 220:157–160PubMedGoogle Scholar
  17. Schindera ST, Nelson RC, Yoshizumi T, Toncheva G, Nguyen G, DeLong DM, Szucs-Farkas Z (2009a) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002PubMedCrossRefGoogle Scholar
  18. Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, Szucs-Farkas Z (2009b) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655PubMedCrossRefGoogle Scholar
  19. Schindera ST, Tock I, Marin D, Nelson RC, Raupach R, Hagemeister M, von Allmen G, Vock P, Szucs-Farkas Z (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256:528–535PubMedCrossRefGoogle Scholar
  20. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, Schmidt B, Marincek B, Alkadhi H, Schertler T (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691PubMedCrossRefGoogle Scholar
  21. Szucs-Farkas Z, Semadeni M, Bensler S, Patak MA, von Allmen G, Vock P, Schindera ST (2009) Endoleak detection with CT angiography in an abdominal aortic aneurysm phantom: effect of tube energy, simulated patient size, and physical properties of endoleaks. Radiology 251:590–598PubMedCrossRefGoogle Scholar
  22. Szucs-Farkas Z, Bensler S, Torrente JC, Cullmann JL, Vock P, Schindera ST (2011) Nonlinear three-dimensional noise filter with low-dose CT angiography: effect on the detection of small high-contrast objects in a phantom model. Radiology 258:261–269PubMedCrossRefGoogle Scholar
  23. Utsunomiya D, Oda S, Funama Y, Awai K, Nakaura T, Yanaga Y, Hirai T, Yamashita Y (2010) Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol 20:2758–2765PubMedCrossRefGoogle Scholar
  24. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRefGoogle Scholar

Part 3: Conversion Factors Specific to CCTA

  1. Berrington de González A, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2017Google Scholar
  2. Bongartz G, Golding S, Jurik A, Leonardi M, van Meerten E v P, Geleijns J et al (2000) European guidelines on quality criteria for computed tomography. EUR 16262. LuxembourgGoogle Scholar
  3. Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Rodríguez R et al (2004) European field survey of the clinical application of CT with a focus on the evaluation of CT protocols and assessment of patient dose. In: European guidelines for multislice computed tomography funded by the European Commission 2004: contract number FIGMCT2000-20078-CT-TIP. European Commission, BrusselsGoogle Scholar
  4. Brenner DJ (2008) Effective dose: a flawed concept that could and should be replaced. British J Radiol 81(967):521–523CrossRefGoogle Scholar
  5. Budoff MJ, Gupta M (2010) Radiation exposure from cardiac imaging procedures: do the risks outweigh the benefits? J Am Coll Cardiol 56(9):712–714PubMedCrossRefGoogle Scholar
  6. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167(4):396–416PubMedCrossRefGoogle Scholar
  7. Christner J, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR 194(4):881–889PubMedCrossRefGoogle Scholar
  8. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effectve dose from dose-length product. Radiology 257(1):158–166PubMedCrossRefGoogle Scholar
  9. Einstein AJ, Elliston CD, Arai AE, Chen MY, Mather R, N. PGD et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254(3):698–706PubMedCrossRefGoogle Scholar
  10. Faletra FF, D’Angeli I, Klersy C, Averaimo M, Klimusina J, Pasotti E et al (2010) Estimates of lifetime attributable risk of cancer after a single radiation exposure from 64-slice computed tomographic coronary angiography. Heart 96(12):927–932PubMedCrossRefGoogle Scholar
  11. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857PubMedCrossRefGoogle Scholar
  12. Fink C, Krissak R, Henzler T, Lechel U, Brix G, Takx RAP et al (2011b) Radiation dose at coronary CT angiography: second-generation dual-source CT versus single-source 64-MDCT and first generation dual-source CT. AJR 196(5):550–557CrossRefGoogle Scholar
  13. Geleijns J, Joemai RMS, Dewey M, de Roos A, Zankl M, Cantera AC et al (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR 196(5):1126–1132PubMedCrossRefGoogle Scholar
  14. Goetti R, Leschka S, Boschung M, Mayer S, Wyss C, Stolzmann P et al (2011) Radiation doses from phantom measurements at high-pitch dual-source computed tomography coronary angiography. Eur J Radiol. [Epub ahead of print]Google Scholar
  15. Goldman LW (2007) Principles of CT: radiation dose and image quality. J Nucl Med Technol 35(4):213–225, 226–228Google Scholar
  16. Gosling O, Loader R, Venables P, Rowles N, Morgan-hughes G, Cardiac RC (2010) CT, are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin Radiol 65(12):1013–1017PubMedCrossRefGoogle Scholar
  17. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5(4):198–224PubMedCrossRefGoogle Scholar
  18. Huda W, Mettler FA (2011) Volume CT dose index and dose-length product displayed during CT: what good are they? Radiation 258:236–242Google Scholar
  19. Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248(3):995–1003Google Scholar
  20. Huda W, Tipnis S, Sterzik A, Schoepf UJ (2010) Computing effective dose in cardiac CT. Phys Med Biol 55(13):3675–3684PubMedCrossRefGoogle Scholar
  21. ICRP (1977) Recommendations of the ICRP. ICRP Publication 26. Ann. ICRP. 1(3)Google Scholar
  22. ICRP (1990) Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 1991. 21(1–3):1–201Google Scholar
  23. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 37(2–4):1–332Google Scholar
  24. Jacobi W (1975) The concept of the effective dose—a proposal for the combination of organ doses. Radiat Environ Biophys 12(2):101–109PubMedCrossRefGoogle Scholar
  25. Ka J, Shrimpton PC, Geleijns J, Panzer W, Tosi G (1999) Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isotopes 50(1):165–172CrossRefGoogle Scholar
  26. Khan A, Nasir K, Khosa F, Saghir A, Sarwar S, Clouse ME (2011) Prospective gating with 320-MDCT angiography: effect of volume scan length on radiation dose. AJR 196(2):407–411PubMedCrossRefGoogle Scholar
  27. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259(3):862–874PubMedCrossRefGoogle Scholar
  28. Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80(956):639–647PubMedCrossRefGoogle Scholar
  29. Matsubara K, Koshida K, Suzuki M, Shimono T, Yamamoto T, Matsui O (2009) Effective dose evaluation of multidetector CT examinations: influence of the ICRP recommendation in 2007. Eur Radiol 19(12):2855–2861PubMedCrossRefGoogle Scholar
  30. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, Mcnitt-gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259(2):311–316PubMedCrossRefGoogle Scholar
  31. Mori S, Nishizawa K, Ohno M, Endo M (2006) Conversion factor for CT dosimetry to assess patient dose using a 256-slice CT scanner. British J Radiol 79(947):888–892CrossRefGoogle Scholar
  32. Nuclear Regulatory Commission (2006) Beir VII : health risks from exposure to low levels of ionizing radiation. National Academies Press, Washington DCGoogle Scholar
  33. Perisinakis K, Seimenis I, Tzedakis A, Papadakis AE, Damilakis J (2010) Individualized assessment of radiation dose in patients undergoing coronary computed tomographic angiography with 256-slice scanning. Circulation 122(23):2394–2402PubMedCrossRefGoogle Scholar
  34. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154(2):178–186PubMedCrossRefGoogle Scholar
  35. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64PubMedCrossRefGoogle Scholar
  36. Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65(11):859–867PubMedCrossRefGoogle Scholar
  37. Shrimpton P (2004) Assessment of patient dose in CT. In: European guidelines for multislice computed tomography funded by the European Commission, contract number FIGMCT2000-20078-CT-TIP. European Commission, Luxembourg, p 2004Google Scholar
  38. Williams MC, Maclachlan DS, Misradraee S, Newby DE, Weir NW (2012) Computed tomography coronary angiography (CTCA) radiation dose: a systematic review of the application of conversion factors. Abstract B-0399. European Congress of RadiologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean François Paul
    • 1
  • Caroline Keyzer
    • 2
  • Michelle Williams
    • 3
  • Denis Tack
    • 4
  1. 1.Department of RadiologyMarie Lannelongue Surgical CentrePlessis-RobinsonFrance
  2. 2.Department of Radiology, Hôpital ErasmeUniversité libre de BruxellesBrusselsBelgium
  3. 3.University of Edinburgh/British Heart Foundation Centre for Cardiovascular ScienceLittle France CrescentUK
  4. 4.Department of RadiologyRHMS Clinique Louis CatyBaudourBelgium

Personalised recommendations