Advertisement

CyberKnife System

  • Jun Yang
  • John P. Lamond
  • Jing Feng
  • Xiaodong Wu
  • Rachelle Lanciano
  • Luther W. Brady
Part of the Medical Radiology book series (MEDRAD)

Abstract

The CyberKnife delivers a great number of independently targeted, non-coplanar radiation beams with high precision under continuous X-ray and optic image guidance for motion management. This targeted delivery of tumor dose with the capability of sparing surrounding normal tissue has proven highly effective for stereotactic body radiation therapy delivery. This chapter provides an overview of the CyberKnife system from a single institutional perspective, covering target tracking and motion management features, pretreatment patient set-up, treatment planning, and treatment delivery.

Keywords

Stereotactic Body Radiation Therapy Treatment Planner Internal Target Volume Simplex Optimization Prostate Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Pam Commike, PhD (Accuray Incorporated) for editorial assistance. The views expressed here are entirely the authors.

References

  1. Adler JR, Cox RS (1996) Preliminary clinical experience with the CyberKnife: image-guided stereotactic radiosurgery. In: Alexander Iii E, Kondziolka D, Loeffler JS (eds) Radiosurgery 1995. Karger, Basel, pp 316–326Google Scholar
  2. Anantham D, Feller-Kopman D, Shanmugham LN, Berman SM, Decamp MM, Gangadharan SP, Eberhardt R, Herth F, Ernst A (2007) Electromagnetic navigation bronchoscopy guided fiducial placement for robotic stereotactic radiosurgery of lung tumors—a feasibility study. Chest 132:930–935Google Scholar
  3. Antypas C, Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718PubMedCrossRefGoogle Scholar
  4. Brown WT, Wu X, Fayad F, Fowler JF, Garcia S, Monterroso MI, De La Zerda A, Schwade JG (2009) Application of robotic stereotactic radiotherapy to peripheral stage I non-small cell lung cancer with curative intent. Clin Oncol (R Coll Radiol) 21:623–631CrossRefGoogle Scholar
  5. Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA, Ford JM, Desser T, Quon A, Koong AC (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672PubMedCrossRefGoogle Scholar
  6. Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, Yoon SK, Chai GY, Kang KM (2008) Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer 8:351PubMedCrossRefGoogle Scholar
  7. Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X, Zhang Y, Subramaniam D, Reichner CA, Sarikaya I, Esposito G, Yousefi S, Jamis-Dow C, Banovac F, Anderson ED (2009) Radical Cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol 2:1PubMedCrossRefGoogle Scholar
  8. Coon D, Gokhale AS, Burton SA, Heron DE, Ozhasoglu C, Christie N (2008) Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer 9:217–221PubMedCrossRefGoogle Scholar
  9. Echner GG, Kilby W, Lee M, Earnst E, Sayeh S, Schlaefer A, Rhein B, Dooley JR, Lang C, Blanck O, Lessard E, Maurer CR Jr, Schlegel W (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54:5359–5380PubMedCrossRefGoogle Scholar
  10. Freeman DE, King CR (2011) Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol 6:3PubMedCrossRefGoogle Scholar
  11. Friedland JL, Freeman DE, Masterson-Mcgary ME, Spellberg DM (2009) Stereotactic body radiotherapy: an emerging treatment approach for localized prostate cancer. Technol Cancer Res Treat 8:387–392PubMedGoogle Scholar
  12. Fu D, Kuduvalli G (2006) Enhancing skeletal features in digitally reconstructed radiographs. Proc SPIE 6144:846–851Google Scholar
  13. Fu D, Kuduvalli G (2008) A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med Phys 35:2180–2194PubMedCrossRefGoogle Scholar
  14. Fu D, Kuduvalli G, Maurer CR Jr, Allison JW, Adler JR Jr (2006) 3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J Comput Assist Radiol Surg 1:198–200Google Scholar
  15. Fu D, Kahn R, Wang B, Wang H, Mu Z, Park J, Kuduvalli G, Maurer CR Jr (2007) Xsight lung tracking system: a fiducial-less method for respiratory motion tracking. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 265–282Google Scholar
  16. Furweger C, Drexler C, Kufeld M, Muacevic A, Wowra B, Schlaefer A (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78:937–945PubMedCrossRefGoogle Scholar
  17. Goodman KA, Anderson EM, Maturen KE, Zhang Z, Mo Q, Yang G, Gibbs IC, Fisher GA, Koong AC (2010) Dose escalation study of stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys 78:486–493PubMedCrossRefGoogle Scholar
  18. Hatipoglu S, Mu Z, Fu D, Kuduvalli G (2007) Evaluation of a robust fiducial tracking algorithm for image-guided radiosurgery. Proc SPIE 6509:65090ACrossRefGoogle Scholar
  19. Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, Maurer CR Jr, Adler JR Jr (2007) A study of the accuracy of Cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 60:147–156CrossRefGoogle Scholar
  20. Hong JC, Yu Y, Rao AK, Dieterich S, Maxim PG, Le QT, Diehn M, Sze DY, Kothary N, Loo BW Jr (2011) High retention and safety of percutaneously implanted endovascular embolization coils as fiducial markers for image-guided stereotactic ablative radiotherapy of pulmonary tumors. Int J Radiat Oncol Biol Phys 81:85–90PubMedCrossRefGoogle Scholar
  21. Hoogeman M, Marijnissen J, Hol J, Van Der Baan P, Levendag PC, Heijmen, BJM (2009a) Validation of Monte Carlo based dose calculation in MultiPlan 2.1 for dose prediction in treatment of small lung tumors and comparison with ray tracing in MultiPlan 1.4.0 regarding GTV and PTV coverage. In: CyberKnife users’ meeting, CyberKnife User’s SocietyGoogle Scholar
  22. Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendag P, Heijmen B (2009b) Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys 74:297–303Google Scholar
  23. Jabbari S, Weinberg VK, Kaprealian T, Hsu IC, Ma L, Chuang C, Descovich M, Shiao S, Shinohara K, Roach M III, Gottschalk AR (2011) Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response. Int J Radiat Oncol Biol Phys 56:7767–7775Google Scholar
  24. Katz AJ, Santoro M, Ashley R, Diblasio F, Witten M (2010) Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol 10:1PubMedCrossRefGoogle Scholar
  25. Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr (2010) The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9:433–452PubMedGoogle Scholar
  26. King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 73:1043–1048PubMedCrossRefGoogle Scholar
  27. King CR, Brooks JD, Gill H, Presti JC Jr (2011) Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  28. Lanciano R, Lamond J, Yang J, Feng J, Arrigo S, Good M, Brady L (2011) Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Int J Radiat Oncol Biol Phys 81:s354Google Scholar
  29. Louis C, Dewas S, Mirabel X, Lacornerie T, Adenis A, Bonodeau F, Lartigau E (2010) Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat 9:479–487PubMedGoogle Scholar
  30. Mahadevan A, Miksad R, Goldstein M, Sullivan R, Bullock A, Buchbinder E, Pleskow D, Sawhney M, Kent T, Vollmer C, Callery M (2011) Induction Gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys 81:e615–e622Google Scholar
  31. Mardirossian G, Muniruzaman M, Lee C, Jin H (2009) Validation of accuracy Multiplan Monte Carlo treatment plans. In: CyberKnife users’ meeting, CyberKnife User’s SocietyGoogle Scholar
  32. Mu Z, Fu D, Kuduvalli G (2006) Multiple fiducial identification using the hidden Markov model in image guided radiosurgery. In: Computer vision and pattern recognition, IEEE Computer Society, p 92Google Scholar
  33. Mu Z, Fu D, Kuduvalli G (2008) A probabilistic framework based on hidden Markov model for fiducial identification in image-guided radiation treatments. IEEE Trans Med Imaging 27:1288–1300PubMedCrossRefGoogle Scholar
  34. Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, Tonn JC (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5:303–312PubMedCrossRefGoogle Scholar
  35. Muacevic A, Drexler C, Wowra B, Schweikard A, Schlaefer A, Hoffmann RT, Wilkowski R, Winter H, Reiser M (2007) Technical description, phantom accuracy, and clinical feasibility for single-session lung radiosurgery using robotic image-guided real-time respiratory tumor tracking. Technol Cancer Res Treat 6:321–328PubMedGoogle Scholar
  36. Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys 24:857–866PubMedCrossRefGoogle Scholar
  37. Murphy MJ (2002) Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 29:334–344PubMedCrossRefGoogle Scholar
  38. Murphy MJ, Balter J, Balter S, Bencomo JA Jr, Das IJ, Jiang SB, Ma CM, Olivera GH, Rodebaugh RF, Ruchala KJ, Shirato H, Yin FF (2007) The management of imaging dose during image-guided radiotherapy: report of the AAPM task group 75. Med Phys 34:4041–4063PubMedCrossRefGoogle Scholar
  39. Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JR, Heijmen B, Evans P, Webb S (2008) Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys 35:1232–1240PubMedCrossRefGoogle Scholar
  40. Papanikoulaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyke J (2004) Tissue inhomogeneity corrections for megavoltage photon beams. http://www.aapm.org/pubs/reports/RPT_85.pdf
  41. Reichner CA, Collins BT, Gagnon GJ, Malik S, Jamis-Dow C, Anderson ED (2005) The placement of gold fiducials for CyberKnife stereotactic radiosurgery using a modified transbronchial needle aspiration technique. J. Bronchol. 12:193–195CrossRefGoogle Scholar
  42. Rwigema JC, Heron DE, Ferris RL, Gibson M, Quinn A, Yang Y, Ozhasoglu C, Burton S (2010) Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: updated report of the University of Pittsburgh experience. Am J Clin Oncol 33:286–293Google Scholar
  43. Sayeh S, Wang J, Main WT, Kilby W, Maurer CR Jr (2007) Respiratory motion tracking for robotic radiosurgery. In: Urschel HC, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 15–29Google Scholar
  44. Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Muacevic A (2010) Frameless single-session robotic radiosurgery of liver metastases in colorectal cancer patients. Eur J Cancer 46:1026–1032PubMedCrossRefGoogle Scholar
  45. Van Der Voort Van Zyp NC, Prevost JB, Hoogeman MS, Praag J, Van Der Holt B, Levendag PC, Van Klaveren RJ, Pattynama P, Nuyttens JJ (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300Google Scholar
  46. Van Der Voort Van Zyp NC, Hoogeman MS, Van De Water S, Levendag PC, Van Der Holt B, Heijmen BJ, Nuyttens JJ (2010a) Clinical introduction of Monte Carlo treatment planning; a different prescription dose for non-small cell lung cancer according to tumor location and size. Radiat Oncol 96:55–60Google Scholar
  47. Van Der Voort Van Zyp NC, Prevost JB, Van Der Holt B, Braat C, Van Klaveren RJ, Pattynama PM, Levendag PC, Nuyttens JJ (2010b) Quality of life after stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:31–37Google Scholar
  48. Vautravers-Dewas C, Dewas S, Bonodeau F, Adenis A, Lacornerie T, Penel N, Lartigau E, Mirabel X (2011) Image-guided robotic stereotactic body radiation therapy for liver metastases: is there a dose response relationship? Int J Radiat Oncol Biol Phys 81:e39–47Google Scholar
  49. Whitaker TJ, Mclaughlin M, Haile K (2009) Reducing monitor units and improving plan quality using combined isocentric and conformal collimators as opposed to conformal collimators along. In: CyberKnife users’ meeting, CyberKnife User’s SocietyGoogle Scholar
  50. Wong KH, Dieterich S, Tang J, Cleary K (2007) Quantitative measurement of CyberKnife robotic arm steering. Technol Cancer Res Treat 6:589–594PubMedGoogle Scholar
  51. Wu X, Fu D, De La Zerda A, Bossart E, Shao H, Both J, Nikesch W, Huang Z, Markkoe A, Schwade J (2007) Patient alignment and target tracking in radiosurgery of soft-tissue tumors using combined fiducial and skeletal structures tracking techniques. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 31–36Google Scholar
  52. Wu X, Dieterich S, Orton CG (2009) Point/counterpoint: only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys 36:4845–4847PubMedCrossRefGoogle Scholar
  53. Xie Y, Djajaputra D, King CR, Hossain S, Ma L, Xing L (2008) Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 72:236–246PubMedCrossRefGoogle Scholar
  54. Yang J, Feng J, Lamond J (2009a) Dose gradient analysis with beam concentricity in conformal planning. In: CyberKnife users’ meeting, CyberKnife User’s SocietyGoogle Scholar
  55. Yang J, Lamond J, Feng J, Lanciano R, Arrigo S, Lavere N, Curtin L, Brady L (2009b) A quality control procedure for using Xsight lung. In: CyberKnife users’ meeting, CyberKnife User’s SocietyGoogle Scholar
  56. Yang J, Lamond J, Lanciano R, Feng J, Gilman S, Brady L (2011) Using foldable gold anchor markers for fiducial tracking with the CyberKnife. In: Robotic radiosurgery summitGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jun Yang
    • 1
  • John P. Lamond
    • 1
  • Jing Feng
    • 1
  • Xiaodong Wu
    • 2
  • Rachelle Lanciano
    • 1
  • Luther W. Brady
    • 1
  1. 1.Drexel University and Philadelphia CyberKnifeHavertownUSA
  2. 2.Interterra Medical Technologies, LLCNaplesUSA

Personalised recommendations