Multi-Detector Row CT–Recent Developments, Radiation Dose and Dose Reduction Technologies

Part of the Medical Radiology book series (MEDRAD)


Clinical experience with the most recent 64-slice and 128-slice CT-systems indicates that a further increase of the number of detector rows will not automatically translate into improved clinical performance. Consequently, recent CT developments have focused on solving remaining limitations of multi-detector row CT, such as limited potential to dynamically scan entire organs or insufficient temporal resolution for cardiac imaging. We discuss new CT system concepts such as CT-scanners with area detectors large enough to cover entire organs, or dual-source CT-systems with considerably enhanced temporal resolution below 100 ms and fast volume coverage by means of high pitch scanning. Furthermore, we introduce and explain the basic radiation dose parameters in CT and their measurement. We briefly discuss established and new techniques for radiation dose reduction, such as anatomical X-ray tube current modulation, organ-based tube current modulation, ECG-controlled tube current modulation, adaptation of the X-ray tube voltage to the patient's anatomy and the planned examination type, dynamically adjustable pre-patient collimators and iterative reconstruction. 


Coronary Compute Tomography Angiography Iterative Reconstruction Tube Current Modulation Adaptive Statistical Iterative Reconstruction Spiral Pitch 


  1. Abels B, Klotz E, Tomandl BF, Villablanca JP, Kloska SP, Lell MM (2011) CT perfusion in acute ischemic stroke: a comparison of 2-second and 1-second temporal resolution. AJNR Am J Neuroradiol 32(9):1632–1639PubMedCrossRefGoogle Scholar
  2. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol 57(3):331–335PubMedCrossRefGoogle Scholar
  3. Achenbach S, Marwan M, Schepis T, Pflederer T, Bruder H, Allmendinger T, Petersilka M, Anders K, Lell M, Kuettner A, Ropers D, Daniel WG, Flohr T (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121PubMedCrossRefGoogle Scholar
  4. Achenbach S, Marwan M, Ropers D, Schepis T, Pflederer T, Anders K, Kuettner A, Daniel WG, Uder M, Lell MM (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 32(3):340–346CrossRefGoogle Scholar
  5. Blankstein R, Shah A, Pale R, Abbara S, Bezerra H, Bolen M, Mamuya WS, Hoffmann U, Brady TJ, Cury RC (2009) Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am J Cardiol 103(8):1168–1173PubMedCrossRefGoogle Scholar
  6. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedCrossRefGoogle Scholar
  7. Christner JA, Zavaletta VA, Eusemann CD, Walz-Flannigan AI, McCollough CH (2010) Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. Am J Roentgenol 2010(194):W49–W55CrossRefGoogle Scholar
  8. Dewey M, Zimmermann E, Deissenrieder F, Laule M, Dübel HP, Schlattmann P, Knebel F, Rutsch W, Hamm B (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120(10):867–875PubMedCrossRefGoogle Scholar
  9. Donelly LF, Emery KH, Brody AS et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR 2001(176):303–306Google Scholar
  10. Earls JP, Berman EL, Urban BA, Curry CA, Lane JL, Jennings RS, McCulloch CC, Hsieh J, Londt JH (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753PubMedCrossRefGoogle Scholar
  11. Engel KJ, Herrmann C, Zeitler G (2007) X-ray scattering in single- and dual-soure CT. Med Phys 35(1):318–332CrossRefGoogle Scholar
  12. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süß C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Küttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268PubMedCrossRefGoogle Scholar
  13. Flohr T, Schoepf UJ, Ohnesorge B (2007) Chasing the heart-new developments for cardiac CT. J Thorac Imaging 22(1):4–16PubMedCrossRefGoogle Scholar
  14. Flohr TG, Leng S, Yu L, Allmendinger T, Bruder H, Petersilka M, Eusemann CD, Stierstorfer K, Schmidt B, McCollough C (2009a) Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality. Med Phys 36(12):5641–5653PubMedCrossRefGoogle Scholar
  15. Flohr TG, Raupach R, Bruder H (2009b) Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved? J Cardiovasc Comput Tomogr 3(3):143–152PubMedCrossRefGoogle Scholar
  16. Funabashi N, Yoshida K, Tadokoro H, Nakagawa K, Komiyama N, Odaka K, Tsunoo T, Mori S, Tanada S, Endo M, Komuro I (2005) Cardiovascular circulation and hepatic perfusion of pigs in 4-dimensional films evaluated by 256-slice cone-beam computed tomography. Circ J 69(5):585–589PubMedCrossRefGoogle Scholar
  17. Glazebrook KN, Guimarães LS, Murthy NS, Black DF, Bongartz T, Manek JN, Leng S, Fletcher JG, McCollough CH (2001) Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology 261(2):516–524CrossRefGoogle Scholar
  18. Graser A, Johnson TR, Bader M, Staehler M, Haseke N, Nikolaou K, Reiser MF, Stief CG, Becker CR (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43(2):112–119PubMedCrossRefGoogle Scholar
  19. Graser A, Becker CR, Staehler M, Clevert DA, Macari M, Arndt N, Nikolaou K, Sommer W, Stief C, Reiser MF, Johnson TR (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45(7):399–405PubMedGoogle Scholar
  20. Greess H, Wolf H, Suess C, Kalender WA, Bautz W, Baum U (2004) Automatic exposure control to reduce the dose in subsecond multislice spiral CT: phantom measurements and clinical results. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176(6):862–869PubMedCrossRefGoogle Scholar
  21. Haberland U, Klotz E, Abolmaali N (2010) Performance assessment of dynamic spiral scan modes with variable pitch for quantitative perfusion computed tomography. Invest Radiol 45(7):378–386PubMedGoogle Scholar
  22. Hoe J, Toh KH (2009) First experience with 320-row multidetector CT coronary angiography scanning with prospective electrocardiogram gating to reduce radiation dose. J Cardiovasc Comput Tomogr 3(4):257–261PubMedCrossRefGoogle Scholar
  23. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, Reiser MF (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002(12):1081–1086CrossRefGoogle Scholar
  24. Johnson TRC, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual source cardiac CT imaging: initial experience. Eur Radiol 2006(16):1409–1415CrossRefGoogle Scholar
  25. Johnson TRC, Krauß B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517PubMedCrossRefGoogle Scholar
  26. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339PubMedCrossRefGoogle Scholar
  27. Ketelsen D, Buchgeister M, Fenchel M, Schmidt B, Flohr TG, Syha R, Thomas C, Tsiflikas I, Claussen CD, Heuschmid M (2011) Automated computed tomography dose-saving algorithm to protect radiosensitive tissues: estimation of radiation exposure and image quality considerations. Invest Radiol 2012 47(2):148–152CrossRefGoogle Scholar
  28. Kido T, Kurata A, Higashino H, Sugawara Y, Okayama H, Higaki J, Anno H, Katada K, Mori S, Tanada S, Endo M, Mochizuki T (2007) Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 25(1):38–44PubMedCrossRefGoogle Scholar
  29. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28(19):2354–2360PubMedCrossRefGoogle Scholar
  30. Lell M, Marwan M, Schepis T, Pflederer T, Anders K, Flohr T, Allmendinger T, Kalender W, Ertel D, Thierfelder C, Kuettner A, Ropers D, Daniel WG, Achenbach S (2009a) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19(11):2576–2583PubMedCrossRefGoogle Scholar
  31. Leschka S, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Schertler T, Scheffel H, Plass A, Falk V, Feuchtner G, Marincek B, Alkadhi H (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19(12):2896–2903PubMedCrossRefGoogle Scholar
  32. Matt D, Scheffel H, Leschka S, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. Am J Roentgenol 189(3):567–573CrossRefGoogle Scholar
  33. McCollough C (2003) Patient Dose in Cardiac Computed Tomography. Herz 2003(28):1–6CrossRefGoogle Scholar
  34. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J (2009) Strategies for Reducing Radiation Dose in CT. Radiol Clin North Am 47(1):27–40PubMedCrossRefGoogle Scholar
  35. Mori S, Endo M, Tsunoo T, Kandatsu S, Tanada S, Aradate H et al (2004) Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys 31(6):1348–1356PubMedCrossRefGoogle Scholar
  36. Mori S, Endo M, Obata T, Tsunoo T, Susumu K, Tanada S. (2006a) Properties of the prototype 256-row (cone beam) CT scanner. Eur Radiol 16(9):2100–2108PubMedCrossRefGoogle Scholar
  37. Mori S, Kondo C, Suzuki N, Hattori A, Kusakabe M, Endo M (2006b) Volumetric coronary angiography using the 256-detector row computed tomography scanner: comparison in vivo and in vitro with porcine models. Acta Radiol 47(2):186–191PubMedCrossRefGoogle Scholar
  38. Mori S, Endo M, Obata T, Kishimoto R, Kato H, Kandatsu S, Tsujii H, Tanada S (2006c) Noise properties for three weighted Feldkamp algorithms using a 256-detector row CT-scanner: case study for hepatic volumetric cine imaging. Eur J Radiol 59(2):289–294PubMedCrossRefGoogle Scholar
  39. Mori S, Obata T, Kato H, Kishimoto R, Kandatsu S, Tanada S, Endo M (2007) Preliminary study: color map of hepatocellular carcinoma using dynamic contrast-enhanced 256-detector row CT. Eur J Radiol 62(2):308–310PubMedCrossRefGoogle Scholar
  40. Morin R, Gerber T, McCollough C (2003) Radiation dose in computed tomography of the heart. Circulation 2003(107):917–922CrossRefGoogle Scholar
  41. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E, Venstermans C, Termote JL (2005) Use of an automatic exposure control mechanism for dose optimization in multi–detector row CT examinations: clinical evaluation. Radiology 237:213–223PubMedCrossRefGoogle Scholar
  42. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368PubMedCrossRefGoogle Scholar
  43. Petersilka M, Stierstorfer K, Bruder H, Flohr T (2010) Strategies for scatter correction in dual source CT. Med Phys 37(11):5971–5992PubMedCrossRefGoogle Scholar
  44. Primak AN, Fletcher JG, Vrtiska TJ, Dzyubak OP, Lieske JC, Jackson ME, Williams JC Jr, McCollough CH (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447PubMedCrossRefGoogle Scholar
  45. Ritman E, Kinsey J, Robb R, Gilbert B, Harris L, Wood E (1980) Three-dimensional imaging of heart, lungs, and circulation. Science 210(4467):273–280PubMedCrossRefGoogle Scholar
  46. Robb R, Ritman E (1979) High speed synchronous volume computed tomography of the heart. Radiology 133(3 Pt 1):655–661PubMedGoogle Scholar
  47. Ropers U, Ropers D, Pflederer T, Anders K, Kuettner A, Stilianakis NI, Komatsu S, Kalender W, Bautz W, Daniel WG, Achenbach S (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50(25):2393–2398PubMedCrossRefGoogle Scholar
  48. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546PubMedCrossRefGoogle Scholar
  49. Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747PubMedCrossRefGoogle Scholar
  50. Scheffel H, Stolzmann P, Frauenfelder T, Schertler T, Desbiolles L, Leschka S, Marincek B, Alkadhi H (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42(12):823–829PubMedCrossRefGoogle Scholar
  51. Scheffel H, Alkadhi H, Leschka S, Plass A, Desbiolles L, Guber I, Krauss T, Gruenenfelder J, Genoni M, Luescher TF, Marincek B, Stolzmann P (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94(9):1132–1137PubMedCrossRefGoogle Scholar
  52. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, Warren BH, Caldwell JH (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248(2):431–437PubMedCrossRefGoogle Scholar
  53. Steigner ML, Otero HJ, Cai T, Mitsouras D, Nallamshetty L, Whitmore AG, Ersoy H, Levit NA, Di Carli MF, Rybicki FJ (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25(1):85–90PubMedCrossRefGoogle Scholar
  54. Stolzmann P, Scheffel H, Schertler T, Frauenfelder T, Leschka S, Husmann L, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H (2008a) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18(3):592–599PubMedCrossRefGoogle Scholar
  55. Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, Genoni M, Flohr TG, Wildermuth S, Marincek B, Alkadhi H (2008b) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249(1):71–80PubMedCrossRefGoogle Scholar
  56. Thibault JB, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34:4526–4544PubMedCrossRefGoogle Scholar
  57. Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13(3):340–343PubMedCrossRefGoogle Scholar
  58. Weigold WG, Olszewski ME, Walker MJ (2009) Low-dose prospectively gated 256-slice coronary computed tomographic angiography. Int J Cardiovasc Imaging 2009 25:217–230CrossRefGoogle Scholar
  59. Wildberger JE, Mahnken AH, Schmitz-Rode T, Flohr T, Stargardt A, Haage P, Schaller S, Guenther RW (2001) Individually adapted examination protocols for reduction of radiation exposure in chest CT. Invest Radiol 36(10):604–611PubMedCrossRefGoogle Scholar
  60. Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, Flohr T, Frauenfelder T, Alkadhi H (2011) Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography improved dose effectiveness. Invest Radiol 46(12):767–773PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Siemens HealthcareForchheimGermany
  2. 2.Eberhard Karls UniversityTübingenGermany

Personalised recommendations