MRI of Bone Metastases

  • Gerwin Paul Schmidt
  • Andrea Baur-Melnyk
Part of the Medical Radiology book series (MEDRAD)


The skeletal system is a frequent target of metastatic spread from various primary tumors such as carcinoma of the breast, lung and prostate cancer. Therefore, it is highly important to accurately assess skeletal metastases in order to facilitate adequate therapy and predict patients’ prognosis. However, only pronounced destruction of bone with loss of mineral content exceeding 50% is readily visible in radiographic examinations. Computed tomography (CT) is definitely more sensitive than radiography and it is the imaging modality of choice to evaluate the extent of destruction of trabecular and cortical bone and to assess stability and fracture risk. Magnetic resonance imaging (MRI), on the other hand, allows visualization of bone marrow structure, such as hematopoietic—and fat cell components. Moreover, tumor infiltration into the spinal canal and paravertebral soft tissues is clearly depicted. The combination of unenhanced T1-weighted-spin echo- and turbo-STIR-sequences has shown to be most useful for the detection of bone marrow abnormalities and is able to discriminate benign from malignant bone marrow changes. Compared with other imaging modalities like radiography, CT or bone scintigraphy, it is the most sensitive technique for the detection of bone marrow pathologies, even if trabecular bone is not destroyed. Recently, multi-channel whole-body MRI (WB-MRI) scanners have been introduced and allow for head-to-toe assessment of the whole skeletal system without compromises in image quality compared with dedicated examinations of limited anatomical areas. Accordingly, WB-MRI has become a useful and sensitive alternative to standard whole-body imaging procedures such as skeletal scintigraphy or whole-body CT.


Positron Emission Tomography Apparent Diffusion Coefficient Bone Metastasis Bone Scintigraphy Skeletal Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368PubMedCrossRefGoogle Scholar
  2. Baur A, Staebler A, Bartl R, Lamerz R, Scheidler J, Reiser MF (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and diffuse neoplastic infiltration. Skelet Radiol 26:414–418CrossRefGoogle Scholar
  3. Baur A, Huber A, Ertl-Wagner B, Dürr R, Zysk S, Arbogast S et al (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. Am J Neuroradiol 22(2):366–372PubMedGoogle Scholar
  4. Baur-Melnyk A, Reiser M (2004) Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography (in German). Radiologe 44(9):874–881PubMedCrossRefGoogle Scholar
  5. Brauck K, Zenge MO, Vogt FM et al (2008) Feasibility of whole-body MR with T2- and T1-weighted real-time steady-state free precession sequences during continuous table movement to depict metastases. Radiology 246(3):910–916PubMedCrossRefGoogle Scholar
  6. Bristow AR, Agrawal A, Evans AJ et al (2008) Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? a prospective study. Breast 17(1):98–103PubMedCrossRefGoogle Scholar
  7. Buhmann Kirchhoff S, Becker C, Duerr HR, Reiser M, Baur-Melnyk A (2009) Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol 69(3):567–573PubMedCrossRefGoogle Scholar
  8. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 23(6):906–912PubMedGoogle Scholar
  9. Castillo M, Malko JA, Hoffman JC (1990) The bright intervertebral disk: an indirect sign of abnormal spinal bone marrow on T1-weighted MR images. Am J Neuroradiol 11:23–26PubMedGoogle Scholar
  10. Chassang M, Grimaud A, Cucchi JM et al (2007) Can low-dose computed tomographic scan of the spine replace conventional radiography? an evaluation based on imaging myelomas, bone metastases and fractures from osteoporosis. Clin Imaging 31(4):225–227PubMedCrossRefGoogle Scholar
  11. Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18-FDG-PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379PubMedGoogle Scholar
  12. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol 177:229–236Google Scholar
  13. Edelstyn GA, Gillespie PJ, Grebbel FS (1967) The radiological demonstration of osseous metastases: experimental observations. Clin Radiol 18:158–162PubMedCrossRefGoogle Scholar
  14. Engelhard K, Hollenbach HP, Wohlfahrt K, Von Imhoff E, Fellner FA (2004) Comparison of whole-body MRI with automated moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol 14:99–105PubMedCrossRefGoogle Scholar
  15. Eustace S, Tello R, DeCarvalho V et al (1997) A comparison of whole-body turbo STIR MR imaging and planar 99mTC-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol 169:1655–1661Google Scholar
  16. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278PubMedGoogle Scholar
  17. Fischer MA, Nanz D, Hany T, Reiner CS, Stolzmann P, Donati OF et al (2011) Diagnostic accuracy of whole-body MRI/DWI image fusion for detection of malignant tumours: a comparison with PET/CT. Eur Radiol 21(2):246–255PubMedCrossRefGoogle Scholar
  18. Fochem K, Ogris E (1976) Early recognition of bone metastases (comparative study between bone scintigraphy and X-ray examination [in German]. Acta Med Austriaca 3(5):170–176PubMedGoogle Scholar
  19. Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Sem NuclMed 35:135–142CrossRefGoogle Scholar
  20. Goo HW (2010) Whole-body MRI of neuroblastoma. Eur J Radiol 75(3):306–314PubMedCrossRefGoogle Scholar
  21. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P (2009) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39:333–343CrossRefGoogle Scholar
  22. Krahe T, Nicolas V, Ring S, Warmuth-Metz M, Koster O (1989) Diagnostic evaluation of full X-ray pictures and computed tomography of bone tumors of the spine (in German). Rofo 150(1):13–19PubMedCrossRefGoogle Scholar
  23. Krishnamurthy GT, Tubis M, Hiss J, Blahd WH (1977) Distribution pattern of metastatic bone disease: a need for total body skeletal image. JAMA 237(23):2504–2506PubMedCrossRefGoogle Scholar
  24. Kumar J, Seith A, Kumar A, Sharma R et al (2008) Whole-body MR imaging with the use of parallel imaging for the detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG-PET-CT. Pediatr Radiol 38:953–962PubMedCrossRefGoogle Scholar
  25. Lauenstein T, Freudenberg L, Goehde S et al (2002) Whole body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099PubMedGoogle Scholar
  26. Lecouvet FE, Malghem J, Michaux L, Maldague B, Ferrant A, Michaux JL et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 106(1):35–39Google Scholar
  27. Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E (2004) Malignant involvement of the spine: assessment by 18FDGPET-CT. J Nucl Med 45:279–284PubMedGoogle Scholar
  28. Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237(1):213–223PubMedCrossRefGoogle Scholar
  29. Poitout D, Gaujoux G, Lempidakis M et al (1991) X-ray computed tomography or MRI in the assessment of bone tumor extension (in French). Chirurgie 117(5–6):488–490PubMedGoogle Scholar
  30. Prior JO, Barghouth G, Delaloye JF, Leyvraz S, Bischof Delaloye A (2003) The value of bone marrow scintigraphy using 99mTc monoclonal antigranulocyte antibodies in complement to bone scintigraphy in detecting bone metastases from primary breast cancer. Nucl Med Commun 24(1):29–36PubMedCrossRefGoogle Scholar
  31. Reske SN, Kotzerke J (2001) FDG-PET for clinical use: results of the 3rd German interdisciplinary consensus conference. Eur J Nucl Med 28:1707–1723PubMedCrossRefGoogle Scholar
  32. Roberts JG, Gravelle IH, Baum M, Bligh AS, Leach KG, Hughes LE (1976) Evaluation of radiography and isotopic scintigraphy for detecting skeletal metastases in breast cancer. Lancet 1(7953):237–239PubMedCrossRefGoogle Scholar
  33. Rubens RD (1998) Bone metastases: the clinical problem. Eur J Cancer 34:210–213PubMedCrossRefGoogle Scholar
  34. Schmidt GP, Wintersperger B, Graser A, Baur-Melnyk A, Reiser MF, Schoenberg SO (2007) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 42(6):449–459Google Scholar
  35. Schmidt GP, Schoenberg SO, Schmid R et al (2007b) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17(4):939–949PubMedCrossRefGoogle Scholar
  36. Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N (2008) Meta-analysis: comparison of F-18 fluorodeoxyglucosepositron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med 33(2):97–101PubMedCrossRefGoogle Scholar
  37. Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129PubMedCrossRefGoogle Scholar
  38. Takahara T, Imay Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275Y282Google Scholar
  39. Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S (1997) Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine (Phila Pa 1976) 22(3):239–245Google Scholar
  40. Vanel D, Bittoun J, Tardivon A (1998) MRI of bone metastases. Eur Radiol 8:1345–1351PubMedCrossRefGoogle Scholar
  41. Walker R, Kessar P, Blanchard R et al (2000) Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11:343–350PubMedCrossRefGoogle Scholar
  42. Weckbach S, Michaely HJ, Stemmer A, Schoenberg SO, Dinter DJ (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20(12):2907–2916PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Clinical RadiologyUniversity Hospitals Munich/Grosshadern, LMUMunichGermany

Personalised recommendations