MR Thermometry

Part of the Medical Radiology book series (MEDRAD)


Noninvasive and minimally invasive thermal therapy of benign and malignant diseases benefit from near-real-time magnetic resonance (MR) image guidance because of MRI’s unique ability to construct maps of in vivo body temperature. This chapter reviews the intrinsic MR parameters that display a temperature sensitivity: the proton resonance frequency (PRF), the diffusion coefficient, T 1 and T 2 relaxation times, magnetization transfer, and the proton density. The principles of temperature measurements with these parameters are reviewed and their usefulness for monitoring in vivo procedures is discussed. The excellent linearity and temperature dependence of the PRF and its near independence with regard to tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.


Magnetization Transfer Temperature Monitoring Magnetic Resonance Elastography Thermal Therapy Phase Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abragam A (1986) The principles of nuclear magnetism. Oxford University Press, Oxford, p 599Google Scholar
  2. Bankson JA, Stafford RJ, Hazle JD (2005) Partially parallel imaging with phase-sensitive data: increased temporal resolution for magnetic resonance temperature imaging. Magn Reson Med 53(3):658–665PubMedCrossRefGoogle Scholar
  3. Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, Feinberg DA, Rosen BR, McKinstry RC, Hushek SG (1991) Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn Reson Med 21(1):132–137PubMedCrossRefGoogle Scholar
  4. Bloembergen N, Purcell E, Pound R (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73(7):679–712CrossRefGoogle Scholar
  5. Bohris C, Schreiber WG, Jenne J, Simiantonakis I, Rastert R, Zabel HJ, Huber P, Bader R, Brix G (1999) Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy. Magn Reson Imaging 17(4):603–610PubMedCrossRefGoogle Scholar
  6. Bottomley PA, Andrew ER (1978) RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23(4):630–643PubMedCrossRefGoogle Scholar
  7. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448PubMedCrossRefGoogle Scholar
  8. Cady EB, D’Souza PC, Penrice J, Lorek A (1995) The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 33(6):862–867PubMedCrossRefGoogle Scholar
  9. Chen J, Daniel BL, Pauly KB (2006) Investigation of proton density for measuring tissue temperature. J Magn Reson Imaging 23(3):430–434PubMedCrossRefGoogle Scholar
  10. Cline HE, Hynynen K, Schneider E, Hardy CJ, Maier SE, Watkins RD, Jolesz FA (1996) Simultaneous magnetic resonance phase and magnitude temperature maps in muscle. Magn Reson Med 35(3):309–315PubMedCrossRefGoogle Scholar
  11. Corbett R, Laptook A, Weatherall P (1997) Noninvasive measurements of human brain temperature using volume-localized proton magnetic resonance spectroscopy. J Cereb Blood Flow Metab 17(4):363–369PubMedCrossRefGoogle Scholar
  12. Covaciu L, Rubertsson S, Ortiz-Nieto F, Ahlström H, Weis J (2010) Human brain MR spectroscopy thermometry using metabolite aqueous-solution calibrations. J Magn Reson Imaging 31(4):807–814PubMedCrossRefGoogle Scholar
  13. Das SK, MacFall J, McCauley R, Craciunescu O, Dewhirst MW, Samulski TV (2005) Improved magnetic resonance thermal imaging by combining proton resonance frequency shift (PRFS) and apparent diffusion coefficient (ADC) data. Int J Hyperthermia 21(7):657–667PubMedCrossRefGoogle Scholar
  14. De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34(3):359–367PubMedCrossRefGoogle Scholar
  15. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33(1):74–81PubMedCrossRefGoogle Scholar
  16. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E (1994) The proton-resonance-frequency-shift method compared with molecular diffusion for quantitative measurement of two-dimensional time-dependent temperature distribution in a phantom. J Magn Reson B 103(3):234–241CrossRefGoogle Scholar
  17. de Senneville BD, Mougenot C, Moonen CTW (2007) Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med 57(2):319–330PubMedCrossRefGoogle Scholar
  18. de Zwart JA, Vimeux FC, Palussière J, Salomir R, Quesson B, Delalande C, Moonen CT (2001) On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 45(1):128–137PubMedCrossRefGoogle Scholar
  19. de Zwart JA, Vimeux FC, Delalande C, Canioni P, Moonen CT (1999) Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation. Magn Reson Med 42(1):53–59PubMedCrossRefGoogle Scholar
  20. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19(3):267–294PubMedCrossRefGoogle Scholar
  21. Dragonu I, de Senneville BD, Quesson B, Moonen CT, Ries M (2009) Real-time geometric distortion correction for interventional imaging with echo-planar imaging (EPI). Magn Reson Med 61(4):994–1000PubMedCrossRefGoogle Scholar
  22. El-Sharkawy AM, Schär M, Bottomley PA, Atalar E (2006) Monitoring and correcting spatio-temporal variations of the MR scanner’s static magnetic field. MAGMA 19(5):223–236PubMedCrossRefGoogle Scholar
  23. Germain D, Chevallier P, Laurent A, Savart M, Wassef M, Saint-Jalmes H (2001) MR monitoring of laser-induced lesions of the liver in vivo in a low-field open magnet: temperature mapping and lesion size prediction. J Magn Reson Imaging 13(1):42–49PubMedCrossRefGoogle Scholar
  24. Germain D, Vahala E, Ehnholm GJ, Vaara T, Ylihautala M, Savart M, Laurent A, Tanttu J, Saint-Jalmes H (2002) MR temperature measurement in liver tissue at 0.23 T with a steady-state free precession sequence. Magn Reson Med 47(5):940–947PubMedCrossRefGoogle Scholar
  25. Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39(2):198–203PubMedCrossRefGoogle Scholar
  26. Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 42(6):1061–1071PubMedCrossRefGoogle Scholar
  27. Grissom WA, Lustig M, Holbrook AB, Rieke V, Pauly JM, Butts Pauly K (2010a) Reweighted ℓ1 referenceless PRF shift thermometry. Magn Reson Med 64(4):1068–1077PubMedCrossRefGoogle Scholar
  28. Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell MV, Butts Pauly K (2010b) Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys 37(9):5014–5026PubMedCrossRefGoogle Scholar
  29. Guo J, Kholmovski E, Zhang L, Jeong E, Parker D (2006) K-space inherited parallel acquisition (KIPA): application on dynamic magnetic resonance imaging thermometry. Magn Reson Imaging 24(7):903–915PubMedCrossRefGoogle Scholar
  30. Hindman JC (1966) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44(12):4582CrossRefGoogle Scholar
  31. Holbrook AB, Santos JM, Kaye E, Rieke V, Butts Pauly K (2010) Real-time MR thermometry for monitoring HIFU ablations of the liver. Magn Reson Med 63(2):365–373PubMedCrossRefGoogle Scholar
  32. Hore P (1995) Nuclear magnetic resonance. Oxford University Press, Oxford, p 90Google Scholar
  33. Hynynen K, McDannold N, Mulkern RV, Jolesz FA (2000) Temperature monitoring in fat with MRI. Magn Reson Med 43(6):901–904PubMedCrossRefGoogle Scholar
  34. Il’yasov KA, Hennig J (1998) Single-shot diffusion-weighted RARE sequence: application for temperature monitoring during hyperthermia session. J Magn Reson Imaging 8(6):1296–1305PubMedCrossRefGoogle Scholar
  35. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823PubMedCrossRefGoogle Scholar
  36. Johnson FH, Eyring H, Stover BJ (1974) The theory of rate processes in biology and medicine. Wiley, New York, p 703Google Scholar
  37. Kim JH, Hahn EW (1979) Clinical and biological studies of localized hyperthermia. Cancer Res 39(6 Pt 2):2258–2261PubMedGoogle Scholar
  38. Kozak LR, Bango M, Szabo M, Rudas G, Vidnyanszky Z, Nagy Z (2010) Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles. Acta Paediatr 99(2):237–243PubMedGoogle Scholar
  39. Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA (2000) Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 43(2):220–225PubMedCrossRefGoogle Scholar
  40. Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA (1997) Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med 38(5):845–851PubMedCrossRefGoogle Scholar
  41. Kuroda K, Oshio K, Mulkern RV, Jolesz FA (1998) Optimization of chemical shift selective suppression of fat. Magn Reson Med 40(4):505–510PubMedCrossRefGoogle Scholar
  42. Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. Int J Hyperthermia 21(6):547–560PubMedCrossRefGoogle Scholar
  43. Kuroda K, Kokuryo D, Kumamoto E, Suzuki K, Matsuoka Y, Keserci B (2006) Optimization of self-reference thermometry using complex field estimation. Magn Reson Med 56(4):835–843PubMedCrossRefGoogle Scholar
  44. Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–857PubMedGoogle Scholar
  45. Le Y, Glaser K, Rouviere O, Ehman R, Felmlee JP (2006) Feasibility of simultaneous temperature and tissue stiffness detection by MRE. Magn Reson Med 55(3):700–705PubMedCrossRefGoogle Scholar
  46. Lepetit-Coiffé M, Quesson B, Seror O, Dumont E, Le Bail B, Moonen CTW, Trillaud H (2006) Real-time monitoring of radiofrequency ablation of rabbit liver by respiratory-gated quantitative temperature MRI. J Magn Reson Imaging 24(1):152–159PubMedCrossRefGoogle Scholar
  47. MacFall JR, Prescott DM, Charles HC, Samulski TV (1996) 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys 23(10):1775–1782PubMedCrossRefGoogle Scholar
  48. MacFall J, Prescott DM, Fullar E, Samulski TV (1995) Temperature dependence of canine brain tissue diffusion coefficient measured in vivo with magnetic resonance echo-planar imaging. Int J Hyperthermia 11(1):73–86PubMedCrossRefGoogle Scholar
  49. Madore B, Panych LP, Mei CS, Yuan J, Chu R (2011) Multipathway sequences for MR thermometry. Magn Reson Med 66(3):658–668PubMedCrossRefGoogle Scholar
  50. Marshall I, Karaszewski B, Wardlaw JM, Cvoro V, Wartolowska K, Armitage PA, Carpenter T, Bastin ME, Farrall A, Haga K (2006) Measurement of regional brain temperature using proton spectroscopic imaging: validation and application to acute ischemic stroke. Magn Reson Imaging 24(6):699–706PubMedCrossRefGoogle Scholar
  51. Matsumoto R, Mulkern RV, Hushek SG, Jolesz FA (1994) Tissue temperature monitoring for thermal interventional therapy: comparison of T1-weighted MR sequences. J Magn Reson Imaging 4(1):65–70PubMedCrossRefGoogle Scholar
  52. McDannold N (2005) Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperthermia 21(6):533–546PubMedCrossRefGoogle Scholar
  53. McDannold N, Hynynen K, Jolesz F (2001) MRI monitoring of the thermal ablation of tissue: effects of long exposure times. J Magn Reson Imaging 13(3):421–427PubMedCrossRefGoogle Scholar
  54. Mei CS, Mulkern RV, Oshio K, Chen NK, Madore B, Panych LP, Hynynen K, McDannold NJ (2011a) Ultrafast 1D MR thermometry using phase or frequency mapping. MAGMA. doi: 10.1007/s10334-011-0272-9
  55. Mei CS, Panych LP, Yuan J, McDannold NJ, Treat LH, Jing Y, Madore B (2011b) Combining two-dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magn Reson Med 66(1):112–122PubMedCrossRefGoogle Scholar
  56. Morikawa S, Inubushi T, Kurumi Y, Naka S, Sato K, Demura K, Tani T, Haque HA (2004) Feasibility of respiratory triggering for MR-guided microwave ablation of liver tumors under general anesthesia. Cardiovasc Intervent Radiol 27(4):370–373Google Scholar
  57. Morvan D, Leroy-Willig A, Malgouyres A, Cuenod CA, Jehenson P, Syrota A (1993) Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique. Magn Reson Med 29(3):371–377PubMedCrossRefGoogle Scholar
  58. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14(2):330–346PubMedCrossRefGoogle Scholar
  59. Nelson TR, Tung SM (1987) Temperature dependence of proton relaxation times in vitro. Magn Reson Imaging 5(3):189–199PubMedCrossRefGoogle Scholar
  60. Paliwal V, El-Sharkawy AM, Du X, Yang X, Atalar E (2004) SSFP-based MR thermometry. Magn Reson Med 52(4):704–708PubMedCrossRefGoogle Scholar
  61. Pan X, Li C, Ying K, Weng D, Qin W, Li K (2010) Model-based PRFS thermometry using fat as the internal reference and the extended Prony algorithm for model fitting. Magn Reson Imaging 28(3):418–426PubMedCrossRefGoogle Scholar
  62. Parker DL (1984) Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 31(1):161–167PubMedCrossRefGoogle Scholar
  63. Parker D, Smith V, Sheldon P, Crooks L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10(3):321–325PubMedCrossRefGoogle Scholar
  64. Peller M, Reinl HM, Weigel A, Meininger M, Issels RD, Reiser M (2002) T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: feasibility study in muscle and adipose tissue. Magn Reson Med 47(6):1194–1201PubMedCrossRefGoogle Scholar
  65. Peng HH, Huang TY, Tseng WYI, Lin EL, Chung HW, Wu CC, Wang YS, Chen WS (2009) Simultaneous temperature and magnetization transfer (MT) monitoring during high-intensity focused ultrasound (HIFU) treatment: preliminary investigation on ex vivo porcine muscle. J Magn Reson Imaging 30(3):596–605PubMedCrossRefGoogle Scholar
  66. Peters RD, Henkelman RM (2000) Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue. Magn Reson Med 43(1):62–71PubMedCrossRefGoogle Scholar
  67. Peters RD, Hinks RS, Henkelman RM (1998) Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med 40(3):454–459PubMedCrossRefGoogle Scholar
  68. Peters RD, Hinks RS, Henkelman RM (1999) Heat-source orientation and geometry dependence in proton-resonance frequency shift magnetic resonance thermometry. Magn Reson Med 41(5):909–918PubMedCrossRefGoogle Scholar
  69. Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533PubMedCrossRefGoogle Scholar
  70. Quesson B, Laurent C, Maclair G, de Senneville BD, Mougenot C, Ries M, Carteret T, Rullier A, Moonen CTW (2010) Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. NMR Biomed 24(2):145–153PubMedCrossRefGoogle Scholar
  71. Rieke V, Butts Pauly K (2008) Echo combination to reduce proton resonance frequency (PRF) thermometry errors from fat. J Magn Reson Imaging 27(3):673–677PubMedCrossRefGoogle Scholar
  72. Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K (2004) Referenceless PRF shift thermometry. Magn Reson Med 51(6):1223–1231PubMedCrossRefGoogle Scholar
  73. Rieke V, Kinsey AM, Ross AB, Nau WH, Diederich CJ, Sommer G, Pauly KB (2007a) Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE Trans Med Imaging 26(6):813–821PubMedCrossRefGoogle Scholar
  74. Rieke V, Hargreaves BA, Butts Pauly K (2007b) PRF shift thermometry using multiple-acquisition phase-cycled balanced SSFP. In: Proceedings of the ISMRM, 2007, p 1133Google Scholar
  75. Salomir R, Viallon M, Kickhefel A, Roland J, Morel D, Petrusca L, Auboiroux V, Terraz S, Becker C, Gross P (2011) Reference-free PRFS MR-thermometry using near-harmonic 2D reconstruction of the background phase. IEEE Trans Med Imaging. doi: 10.1109/TMI.2011.2168421
  76. Salomir R, de Senneville BD, Moonen CTW (2003) A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson B Magn Reson Eng 19(1):26–34Google Scholar
  77. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800PubMedCrossRefGoogle Scholar
  78. Scheffler K (2004) Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry. Magn Reson Med 51(6):1205–1211PubMedCrossRefGoogle Scholar
  79. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850PubMedCrossRefGoogle Scholar
  80. Shmatukha AV, Bakker CJG (2006) Correction of proton resonance frequency shift temperature maps for magnetic field disturbances caused by breathing. Phys Med Biol 51(18):4689–4705PubMedCrossRefGoogle Scholar
  81. Shmatukha AV, Harvey PR, Bakker CJG (2007) Correction of proton resonance frequency shift temperature maps for magnetic field disturbances using fat signal. J Magn Reson Imaging 25(3):579–587PubMedCrossRefGoogle Scholar
  82. Soher BJ, Wyatt C, Reeder SB, MacFall JR (2010) Noninvasive temperature mapping with MRI using chemical shift water-fat separation. Magn Reson Med 63(5):1238–1246PubMedCrossRefGoogle Scholar
  83. Sprinkhuizen SM, Konings MK, van der Bom MJ, Viergever MA, Bakker CJG, Bartels LW (2010a) Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions. Magn Reson Med 64(5):1360–1372PubMedCrossRefGoogle Scholar
  84. Sprinkhuizen SM, Bakker CJG, Bartels LW (2010b) Absolute MR thermometry using time-domain analysis of multi-gradient-echo magnitude images. Magn Reson Med 64(1):239–248PubMedCrossRefGoogle Scholar
  85. Stafford RJ, Hazle JD, Glover GH (2000) Monitoring of high-intensity focused ultrasound-induced temperature changes in vitro using an interleaved spiral acquisition. Magn Reson Med 43(6):909–912PubMedCrossRefGoogle Scholar
  86. Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD (2004) Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 20(4):706–714PubMedCrossRefGoogle Scholar
  87. Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, Ebner F (1998) Temperature monitoring of interstitial thermal tissue coagulation using MR phase images. J Magn Reson Imaging 8(1):188–196PubMedCrossRefGoogle Scholar
  88. Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol 53(6):825–835PubMedGoogle Scholar
  89. Todd N, Adluru G, Payne A, DiBella EVR, Parker D (2009) Temporally constrained reconstruction applied to MRI temperature data. Magn Reson Med 62(2):406–419PubMedCrossRefGoogle Scholar
  90. Vigen KK, Daniel BL, Pauly JM, Butts K (2003) Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med 50(5):1003–1010PubMedCrossRefGoogle Scholar
  91. Weidensteiner C, Quesson B, Caire-Gana BND, Kerioui N, Rullier A, Trillaud H, Moonen CTW (2003) Real-time MR temperature mapping of rabbit liver in vivo during thermal ablation. Magn Reson Med 50(2):322–330PubMedCrossRefGoogle Scholar
  92. Weidensteiner C, Kerioui N, Quesson B, de Senneville BD, Trillaud H, Moonen CTW (2004) Stability of real-time MR temperature mapping in healthy and diseased human liver. J Magn Reson Imaging 19(4):438–446PubMedCrossRefGoogle Scholar
  93. Weis J, Covaciu L, Rubertsson S, Allers M, Lunderquist A, Ahlström H (2009) Noninvasive monitoring of brain temperature during mild hypothermia. Magn Reson Imaging 27(7):923–932PubMedCrossRefGoogle Scholar
  94. Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Mönich G, Felix R (1998) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8(1):165–174PubMedCrossRefGoogle Scholar
  95. Wlodarczyk W, Hentschel M, Wust P, Noeske R, Hosten N, Rinneberg H, Felix R (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624PubMedCrossRefGoogle Scholar
  96. Young IR, Hajnal JV, Roberts IG, Ling JX, Hill-Cottingham RJ, Oatridge A, Wilson JA (1996) An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle. Magn Reson Med 36(3):366–374PubMedCrossRefGoogle Scholar
  97. Young I, Hand J, Oatridge A (1994) Modeling and observation of temperature changes in vivo using MRI. Magn Reson Med 32(3):358–369PubMedCrossRefGoogle Scholar
  98. Yuan J, Mei CS, Madore B, McDannold NJ, Panych LP (2011) Fast fat-suppressed reduced field-of-view temperature mapping using 2DRF excitation pulses. J Magn Reson 210(1):38–43PubMedCrossRefGoogle Scholar
  99. Yuan L, Glaser KJ, Rouviere O, Gorny KR, Chen S, Manduca A, Ehman RL, Felmlee JP (2007) Preliminary assessment of one-dimensional MR elastography for use in monitoring focused ultrasound therapy. Phys Med Biol 52(19):5909–5919PubMedCrossRefGoogle Scholar
  100. Zhang Y, Samulski TV, Joines WT, Mattiello J, Levin RL, LeBihan D (1992) On the accuracy of noninvasive thermometry using molecular diffusion magnetic resonance imaging. Int J Hyperthermia 8(2):263–274PubMedCrossRefGoogle Scholar
  101. Zhu M, Bashir A, Ackerman JJ, Yablonskiy DA (2008) Improved calibration technique for in vivo proton MRS thermometry for brain temperature measurement. Magn Reson Med 60(3):536–541PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations