Image Noise Reduction Filters

  • Sarabjeet Singh
  • Mannudeep K. Kalra
Part of the Medical Radiology book series (MEDRAD)


With the expanding use of CT and growing concerns for radiation related risks, several efforts have been made in scientific community to lower radiation dose without compromising the image quality (Berrington de González et al. Arch Intern Med 169:2071–2077, 2009; Schauer and Linton Health Phys 97:1–5, 2009; UNSCEAR Health Phys 79(3):314, 2000). In this chapter, we discuss application of image post processing filters to low radiation dose CT, as one of the technical advances for lowering radiation dose.


Noise Reduction Image Noise Modulation Transfer Function Automatic Exposure Control Lower Image Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAPM (2011) AAPM Report # 39 specification and acceptance testing of computed tomography scanners. Accessed from on August 17, 2011
  2. Bai M, Chen J, Raupach R, Suess C, Tao Y, Peng M (2009) Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: validation on phantoms. Med Phys 36(1):95–97PubMedCrossRefGoogle Scholar
  3. Baum U, Noemayr A, Reissig A, Lell M, Cavallaro A, Kachelriess M, Riedel T, Kalender WA, Bautz W (2003) Improvement of the image quality of MSCT of the pelvis with a raw data-based, multidimensional filter. Rofo 175(11):1572–1576PubMedCrossRefGoogle Scholar
  4. Baum U, Anders K, Steinbichler G, Lell M, Greess H, Riedel T, Kachelriess M, Kalender WA, Bautz WA (2004) Improvement of image quality of multislice spiral CT scans of the head and neck region using a raw data-based multidimensional adaptive filtering (MAF) technique. Eur Radiol 14(10):1873–1881PubMedCrossRefGoogle Scholar
  5. Berrington de González A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRefGoogle Scholar
  6. Branschofsky M, Vogt C, Aurich V, Beck A, Mödder U, Cohnen M (2006) Feasibility of ultra-low-dose multi-detector-row CT-colonography: detection of artificial endoluminal lesions in an in vitro-model with optimization of image quality using a noise reduction filter algorithm. Eur J Med Res 11(1):13–19PubMedGoogle Scholar
  7. Burt P, Adelson E (1983) The Laplacian pyramid as compact image code. IEEE Trans Commun 31:532–540CrossRefGoogle Scholar
  8. De Geer J, Sandborg M, Smedby O, Persson A (2011) The efficacy of 2D, non-linear noise reduction filtering in cardiac imaging: a pilot study. Acta Radiol 52(7):716–722PubMedCrossRefGoogle Scholar
  9. Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, Shimonobo T, Liu D, Yamashita Y, Hori S (2006) Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 41(1):1–7PubMedCrossRefGoogle Scholar
  10. Funama Y, Awai K, Miyazaki O, Goto T, Nakayama Y, Shimamura M, Hiraishi K, Hori S, Yamashita Y (2008) Radiation dose reduction in hepatic multidetector computed tomography with a novel adaptive noise reduction filter. Radiat Med 26(3):171–177PubMedCrossRefGoogle Scholar
  11. Giraldo JC, Kelm ZS, Guimaraes LS, Yu L, Fletcher JG, Erickson BJ, McCollough CH (2009) Comparative study of two image space noise reduction methods for computed tomography: bilateral filter and nonlocal means. Conf Proc IEEE Eng Med Biol Soc 2009:3529–3532PubMedGoogle Scholar
  12. Guimarães LS, Fletcher JG, Yu L, Huprich JE, Fidler JL, Manduca A, Ramirez-Giraldo JC, Holmes DR Jr, McCollough CH (2010) Feasibility of dose reduction using novel denoising techniques for low kV (80 kV) CT enterography: optimization and validation. Acad Radiol 17(10):1203–1210PubMedCrossRefGoogle Scholar
  13. Hsieh J (1998) Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise. Med Phys 25(11):2139–2147PubMedCrossRefGoogle Scholar
  14. Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475–490PubMedCrossRefGoogle Scholar
  15. Kakeda S, Korogi Y, Ogawa M, Otsubo K, Morishita Y (2010) Reduction of the radiation dose for multidetector row CT angiography of cerebral aneurysms using an edge-preserving adaptive filter: a vascular phantom study. AJNR Am J Neuroradiol 31(5):827–829PubMedCrossRefGoogle Scholar
  16. Kalender WA (2000) Computed tomography. MCD, München, p 137Google Scholar
  17. Kalra MK, Maher MM, Sahani DV, Blake MA, Hahn PF, Avinash GB, Toth TL, Halpern E, Saini S (2003a) Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters pilot study. Radiology 228(1):251–256PubMedCrossRefGoogle Scholar
  18. Kalra MK, Wittram C, Maher MM, Sharma A, Avinash GB, Karau K, Toth TL, Halpern E, Saini S, Shepard JA (2003b) Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228(1):257–264PubMedCrossRefGoogle Scholar
  19. Kalra MK, Maher MM, Blake MA, Lucey BC, Karau K, Toth TL, Avinash G, Halpern EF, Saini S (2004) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232(3):791–797PubMedCrossRefGoogle Scholar
  20. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30(3):391–397PubMedCrossRefGoogle Scholar
  21. Kazama M, Tsukagoshi S, Okumura M (2006) Image quality improvement and exposure dose reduction with the combined use of X-ray modulation and Boost3D. Proc SPIE Int Soc Opt Eng 6142:847–855, 61422G. doi: 10.1117/12.653092
  22. Keselbrener L, Shimoni Y, Akselrod S (1992) Nonlinear filters applied on computerized axial tomography: theory and phantom images. Med Phys 19(4):1057–1064PubMedCrossRefGoogle Scholar
  23. Khullar D, Subramanyan K, Johnson P (2005) Evaluation of a noise-reduction contrast-enhancement algorithm for CT cardiac angiography. Proc SPIE 5749:310–318CrossRefGoogle Scholar
  24. Kröpil P, Lanzman RS, Walther C, Röhlen S, Godehardt E, Mödder U, Cohnen M (2010) Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive post-processing filter. Rofo 182(3):248–253PubMedCrossRefGoogle Scholar
  25. Kubo T, Nishino M, Kino A, Yoshimura N, Lin PJ, Takahashi M, Raptopoulos V, Hatabu H (2006) 3-dimensional adaptive raw-data filter: evaluation in low dose chest multidetector-row computed tomography. J Comput Assist Tomogr 30(6):933–938PubMedCrossRefGoogle Scholar
  26. Kubo T, Ohno Y, Gautam S, Lin PJ, Kauczor HU, Hatabu H (2008) iLEAD study group: use of 3D adaptive raw-data filter in CT of the lung: effect on radiation dose reduction. Am J Roentgenol 191(4):1071CrossRefGoogle Scholar
  27. Leander P, Söderberg M, Fält T, Gunnarsson M, Albertsson I (2010) Post-processing image filtration enabling dose reduction in standard abdominal CT. Radiat Prot Dosimetry 139(1–3):180–185PubMedCrossRefGoogle Scholar
  28. Ledenius K, Stålhammar F, Wiklund LM, Fredriksson C, Forsberg A, Thilander-Klang A (2010) Evaluation of image-enhanced paediatric computed tomography brain examinations. Radiat Prot Dosimetry 139(1–3):287–292PubMedCrossRefGoogle Scholar
  29. Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919PubMedCrossRefGoogle Scholar
  30. Martinsen AC, Saether HK, Olsen DR, Skaane P, Olerud HM (2008)Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Acta Radiol 49(3):303–309PubMedCrossRefGoogle Scholar
  31. Martinsen AC, Saether HK, Olsen DR, Wolff PA, Skaane P (2010) Improved image quality of low-dose thoracic CT examinations with a new postprocessing software. J Appl Clin Med Phys 11(3):3242PubMedGoogle Scholar
  32. Nakashima J, Takahashi T, Takahashi Y, Imai Y, Ishihara Y, Kato K, Nakazawa Y (2010) Radiation dose reduction using a non-linear image filter in MDCT. Nihon Hoshasen Gijutsu Gakkai Zasshi 66(5):515–524PubMedCrossRefGoogle Scholar
  33. Nishimaru E, Ichikawa K, Okita I, Tomoshige Y, Kurokawa T, Nakamura Y, Suzuki M (2010) Development of a noise reduction filter algorithm for pediatric body images in multidetector CT. J Digit Imaging 23(6):806–818PubMedCrossRefGoogle Scholar
  34. Okumura M, Ota T, Tsukagoshi S, Katada K (2006) New method of evaluating edge-preserving adaptive filters for computed tomography (CT): digital phantom method. Nihon Hoshasen Gijutsu Gakkai Zasshi 62(7):971–978PubMedCrossRefGoogle Scholar
  35. Paul NS, Blobel J, Prezelj E, Burey P, Ursani A, Menezes RJ, Kashani H, Siewerdsen JH (2010) The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT. Phys Med Biol 55:1363–1380PubMedCrossRefGoogle Scholar
  36. Rizzo SM, Kalra MK, Schmidt B, Raupach R, Maher MM, Blake MA, Saini S (2005) CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics. Radiology 237(1):309–315PubMedCrossRefGoogle Scholar
  37. Schauer DA, Linton OW (2009) NCRP report no. 160, ionizing radiation exposure of the population of the United States, medical exposure–are we doing less with more, and is there a role for health physicists? Health Phys 97:1–5PubMedCrossRefGoogle Scholar
  38. Schilham AM, van Ginneken B, Gietema H, Prokop M (2006) Local noise weighted filtering for emphysema scoring of low-dose CT images. IEEE Trans Med Imaging 25:451–463PubMedCrossRefGoogle Scholar
  39. Schindera ST, Torrente JC, Ruder TD, Hoppe H, Marin D, Nelson RC, Szucs-Farkas Z (2011) Decreased detection of hypovascular liver tumors with MDCT in obese patients: a phantom study. Am J Roentgenol 196(6):W772–W776CrossRefGoogle Scholar
  40. Seifarth H, Raupach R, Schaller S, Fallenberg EM, Flohr T, Heindel W, Fischbach R, Maintz D (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15(4):721–726PubMedCrossRefGoogle Scholar
  41. Szucs-Farkas Z, Bensler S, Torrente JC, Cullmann JL, Vock P, Schindera ST (2011) Nonlinear three-dimensional noise filter with low-dose CT angiography: effect on the detection of small high-contrast objects in a phantom model. Radiology 258(1):261–269PubMedCrossRefGoogle Scholar
  42. UNSCEAR ( 2000) The United Nations scientific committee on the effects of atomic radiation. Health Phys 79(3):314Google Scholar
  43. Wessling J, Esseling R, Raupach R, Fockenberg S, Osada N, Gerss J, Heindel W, Fischbach R (2007) The effect of dose reduction and feasibility of edge-preserving noise reduction on the detection of liver lesions using MSCT. Eur Radiol 17(7):1885–1891PubMedCrossRefGoogle Scholar
  44. Yanaga Y, Awai K, Funama Y, Nakaura T, Hirai T, Roux S, Yamashita Y (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. Am J Roentgenol 193(3):W220–W229CrossRefGoogle Scholar
  45. Yu L, Manduca A, Trzasko J, Khaylova N, Kofler JM, McCollough CH, Fletcher JG (2008) Sinogram smoothing with bilateral filtering for low-dose CT. Progress in Biomed Optics Imaging Proc SPIE 6913, article 691329Google Scholar
  46. Yu L, Manduca A, Jacobsen M, Trzasko JD, Fletcher JG, DeLone DR, McCollough CH (2010) Adaptive modulation of bilateral filtering based on a practical noise model for streaking and noise reduction in multi-slice CT. Proc SPIE 7622:76222OGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Radiology, Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations