Patients with HIV

  • Rathan M. Subramaniam
  • J. M. Davison
  • Devaki S. Surasi
  • T. Jackson
  • T. Cooley
Part of the Medical Radiology book series (MEDRAD)


This chapter discusses FDG normal variant uptake in HIV patients and the role of FDG PET/CT in malignancies in HIV-infected patients, CNS manifestations of HIV, assessing fever of unknown origin in HIV patients, assessing response to highly active antiretroviral therapy, and assessing complications. FDG PET/CT has proven useful in the diagnosis, staging, and detection of metastasis and post treatment monitoring of several malignancies in HIV-infected patients. It also has the ability to make the important distinction between malignancy and infection in the evaluation of CNS lesions, leading to the initiation of the appropriate treatment and precluding the need for invasive biopsy. However, immunosuppression predisposes patients to a number of opportunistic infections, and therefore special care must be taken interpreting FDG PET/CT in HIV patients


Progressive Multifocal Leukoencephalopathy Primary Central Nervous System Lymphoma Burkitt Lymphoma Immune Reconstitution Inflammatory Syndrome Progressive Multifocal Leukoencephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki Y, Tosato G (2004) Neoplastic conditions in the context of HIV-1 infection. Curr HIV Res 2:343–349PubMedCrossRefGoogle Scholar
  2. Bakheet SM, Powe J (1998) Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 28:352–358PubMedCrossRefGoogle Scholar
  3. Barker R, Kazmi F, Stebbing J et al (2009) FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman’s disease. Eur J Nucl Med Mol Imaging 36:648–652PubMedCrossRefGoogle Scholar
  4. Bental M, Deutsch C (1993) Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med 29:317–326PubMedCrossRefGoogle Scholar
  5. Bleeker-Rovers CP, van der Ven AJ, Zomer B et al (2004) F-18-fluorodeoxyglucose positron emission tomography for visualization of lipodystrophy in HIV-infected patients. AIDS 18:2430–2432PubMedGoogle Scholar
  6. Blum KA, Lozanski G, Byrd JC (2004) Adult Burkitt leukemia and lymphoma. Blood 104:3009–3020PubMedCrossRefGoogle Scholar
  7. Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2:373–382PubMedCrossRefGoogle Scholar
  8. Bower M, Palmieri C, Dhillon T (2006) AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis 19:14–19PubMedCrossRefGoogle Scholar
  9. Brust D, Polis M, Davey R et al (2006) Fluorodeoxyglucose imaging in healthy subjects with HIV infection: impact of disease stage and therapy on pattern of nodal activation. AIDS 20:985–993PubMedCrossRefGoogle Scholar
  10. Carbone A, Gloghini A (2005) AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol 130:662–670PubMedCrossRefGoogle Scholar
  11. Castaigne C, Tondeur M, de Wit S, Hildebrand M, Clumeck N, Dusart M (2009) Clinical value of FDG-PET/CT for the diagnosis of human immunodeficiency virus-associated fever of unknown origin: a retrospective study. Nucl Med Commun 30:41–47PubMedCrossRefGoogle Scholar
  12. Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869PubMedCrossRefGoogle Scholar
  13. Cotter SE, Grigsby PW, Siegel BA et al (2006) FDG-PET/CT in the evaluation of anal carcinoma. Int J Radiat Oncol Biol Phys 65:720–725PubMedCrossRefGoogle Scholar
  14. DeMario MD, Liebowitz DN (1998) Lymphomas in the immunocompromised patient. Semin Oncol 25:492–502PubMedGoogle Scholar
  15. Dupin N, Diss TL, Kellam P et al (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412PubMedGoogle Scholar
  16. Elder GA, Sever JL (1988) Neurologic disorders associated with AIDS retroviral infection. Rev Infect Dis 10:286–302PubMedCrossRefGoogle Scholar
  17. Euvrard S, Kanitakis J, Claudy A (2003) Skin cancers after organ transplantation. N Engl J Med 348:1681–1691PubMedCrossRefGoogle Scholar
  18. Fox CH, Tenner-Racz K, Racz P, Firpo A, Pizzo PA, Fauci AS (1991) Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA. J Infect Dis 164:1051–1057PubMedCrossRefGoogle Scholar
  19. French MA (2009) HIV/AIDS: immune reconstitution inflammatory syndrome: a reappraisal. Clin Infect Dis 48:101–107PubMedCrossRefGoogle Scholar
  20. Frisch M, Biggar RJ, Goedert JJ (2000) Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst 92:1500–1510PubMedCrossRefGoogle Scholar
  21. Frisch M, Biggar RJ, Engels EA, Goedert JJ (2001) Association of cancer with AIDS-related immunosuppression in adults. JAMA 285:1736–1745PubMedCrossRefGoogle Scholar
  22. Gallagher B, Wang Z, Schymura MJ, Kahn A, Fordyce EJ (2001) Cancer incidence in New York state acquired immunodeficiency syndrome patients. Am J Epidemiol 154:544–556PubMedCrossRefGoogle Scholar
  23. Goshen E, Davidson T, Avigdor A, Zwas TS, Levy I (2008) PET/CT in the evaluation of lymphoma in patients with HIV-1 with suppressed viral loads. Clin Nucl Med 33:610–614PubMedCrossRefGoogle Scholar
  24. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22:2167–2171PubMedCrossRefGoogle Scholar
  25. Hall HI, Song R, Rhodes P et al (2008) Estimation of HIV incidence in the United States. JAMA 300:520–529PubMedCrossRefGoogle Scholar
  26. Hardy G, Worrell S, Hayes P et al (2004) Evidence of thymic reconstitution after highly active antiretroviral therapy in HIV-1 infection. HIV Med 5:67–73PubMedCrossRefGoogle Scholar
  27. Heald AE, Hoffman JM, Bartlett JA, Waskin HA (1996) Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 7:337–346PubMedCrossRefGoogle Scholar
  28. Heaton RK, Grant I, Butters N et al (1995) The HNRC 500—neuropsychology of HIV infection at different disease stages. J Int Neuropsychol Soc 1:231–251PubMedCrossRefGoogle Scholar
  29. Hillier JC, Shaw P, Miller RF et al (2004) Imaging features of multicentric Castleman’s disease in HIV infection. Clin Radiol 59:596–601PubMedCrossRefGoogle Scholar
  30. Hoffman JM, Waskin HA, Schifter T et al (1993) FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 34:567–575PubMedGoogle Scholar
  31. Iyengar S, Chin B, Margolick JB, Sabundayo BP, Schwartz DH (2003) Anatomical loci of HIV-associated immune activation and association with viraemia. Lancet 362:945–950PubMedCrossRefGoogle Scholar
  32. Jhanwar YS, Straus DJ (2006) The role of PET in lymphoma. J Nucl Med 47:1326–1334PubMedGoogle Scholar
  33. Just PA, Fieschi C, Baillet G, Galicier L, Oksenhendler E, Moretti JL (2008) 18F-fluorodeoxyglucose positron emission tomography/computed tomography in AIDS-related Burkitt lymphoma. AIDS Patient Care STDS 22:695–700PubMedCrossRefGoogle Scholar
  34. Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D (1996) The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med 2:918–924PubMedCrossRefGoogle Scholar
  35. Krown SE, Metroka C, Wernz JC (1989) Kaposi’s sarcoma in the acquired immune deficiency syndrome: a proposal for uniform evaluation, response, and staging criteria. J Clin Oncol 7:1201–1207PubMedGoogle Scholar
  36. Kwan A, Seltzer M, Czernin J, Chou MJ, Kao CH (2001) Characterization of hilar lymph node by 18F-fluoro-2-deoxyglucose positron emission tomography in healthy subjects. Anticancer Res 21:701–706PubMedGoogle Scholar
  37. Levy RM, Bredesen DE, Rosenblum ML, Davis RL (1989) Central nervous system disorders in AIDS. Immunol Ser 44:371–401PubMedGoogle Scholar
  38. Liu Y (2009) Clinical significance of diffusely increased splenic uptake on FDG-PET. Nucl Med Commun 30:763–769PubMedCrossRefGoogle Scholar
  39. Lucignani G, Orunesu E, Cesari M et al (2009) FDG-PET imaging in HIV-infected subjects: relation with therapy and immunovirological variables. Eur J Nucl Med Mol Imaging 36:640–647PubMedCrossRefGoogle Scholar
  40. Manzardo C, Del Mar Ortega M, Sued O, Garcia F, Moreno A, Miro JM (2005) Central nervous system opportunistic infections in developed countries in the highly active antiretroviral therapy era. J Neurovirol 11(Suppl 3):72–82PubMedCrossRefGoogle Scholar
  41. Marjanovic S, Skog S, Heiden T, Tribukait B, Nelson BD (1991) Expression of glycolytic isoenzymes in activated human peripheral lymphocytes: cell cycle analysis using flow cytometry. Exp Cell Res 193:425–431PubMedCrossRefGoogle Scholar
  42. Mbulaiteye SM, Parkin DM, Rabkin CS (2003) Epidemiology of AIDS-related malignancies an international perspective. Hematol Oncol Clin North Am 17:673–696Google Scholar
  43. Meintjes G, Lynen L (2008) Prevention and treatment of the immune reconstitution inflammatory syndrome. Curr Opin HIV AIDS 3:468–476PubMedCrossRefGoogle Scholar
  44. Nasti G, Tirelli U (2005) Highly active antiretroviral therapy in AIDS-associated Kaposi’s sarcoma (KS): implications for the design of therapeutic trials in patients with advanced symptomatic KS. J Clin Oncol 23:2433–2434Google Scholar
  45. Nasti G, Talamini R, Antinori A et al (2003) AIDS-related Kaposi’s Sarcoma: evaluation of potential new prognostic factors and assessment of the AIDS clinical trial group staging system in the Haart era—the Italian cooperative group on AIDS and tumors and the Italian cohort of patients naive from antiretrovirals. J Clin Oncol 21:2876–2882PubMedCrossRefGoogle Scholar
  46. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524PubMedCrossRefGoogle Scholar
  47. Niu MT, Jermano JA, Reichelderfer P, Schnittman SM (1993) Summary of the National Institutes of Health workshop on primary human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 9:913–924PubMedCrossRefGoogle Scholar
  48. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS (1997) PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 38:1575–1583PubMedGoogle Scholar
  49. Offiah CE, Turnbull IW (2006) The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients. Clin Radiol 61:393–401PubMedCrossRefGoogle Scholar
  50. Oksenhendler E, Duarte M, Soulier J et al (1996) Multicentric Castleman’s disease in HIV infection: a clinical and pathological study of 20 patients. AIDS 10:61–67PubMedCrossRefGoogle Scholar
  51. Oksenhendler E, Boulanger E, Galicier L et al (2002) High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood 99:2331–2336PubMedCrossRefGoogle Scholar
  52. Pantaleo G, Graziosi C, Butini L et al (1991) Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci U S A 88:9838–9842PubMedCrossRefGoogle Scholar
  53. Pantaleo G, Graziosi C, Demarest JF et al (1994) Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev 140:105–130PubMedCrossRefGoogle Scholar
  54. Pascal S, Resnick L, Barker WW et al (1991) Metabolic asymmetries in asymptomatic HIV-1 seropositive subjects: relationship to disease onset and MRI findings. J Nucl Med 32:1725–1729PubMedGoogle Scholar
  55. Quinn TC (1996) Global burden of the HIV pandemic. Lancet 348:99–106PubMedCrossRefGoogle Scholar
  56. Rabkin CS, Yellin F (1994) Cancer incidence in a population with a high prevalence of infection with human immunodeficiency virus type 1. J Natl Cancer Inst 86:1711–1716PubMedCrossRefGoogle Scholar
  57. Rottenberg DA, Moeller JR, Strother SC et al (1987) The metabolic pathology of the AIDS dementia complex. Ann Neurol 22:700–706PubMedCrossRefGoogle Scholar
  58. Rottenberg DA, Sidtis JJ, Strother SC et al (1996) Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med 37:1133–1141PubMedGoogle Scholar
  59. Rubio A, Martinez-Moya M, Leal M et al (2002) Changes in thymus volume in adult HIV-infected patients under HAART: correlation with the T-cell repopulation. Clin Exp Immunol 130:121–126PubMedCrossRefGoogle Scholar
  60. Scharko AM, Perlman SB, Pyzalski RW, Graziano FM, Sosman J, Pauza CD (2003) Whole-body positron emission tomography in patients with HIV-1 infection. Lancet 362:959–961PubMedCrossRefGoogle Scholar
  61. Subhas N, Patel PV, Pannu HK, Jacene HA, Fishman EK, Wahl RL (2005) Imaging of pelvic malignancies with in-line FDG PET-CT: case examples and common pitfalls of FDG PET. Radiographics 25:1031–1043PubMedCrossRefGoogle Scholar
  62. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL (1998) Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 25:1238–1243PubMedCrossRefGoogle Scholar
  63. Tenner-Racz K, Racz P, Gluckman JC, Popovic M (1988) Cell-free HIV in lymph nodes of patients with AIDS and generalized lymphadenopathy. N Engl J Med 318:49–50PubMedCrossRefGoogle Scholar
  64. UNAIDS (2008) Report on the global AIDS epidemic. In: JUNPoHA (ed) UNAIDS ,GenevaGoogle Scholar
  65. Villringer K, Jager H, Dichgans M et al (1995) Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 19:532–536PubMedCrossRefGoogle Scholar
  66. von Giesen HJ, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G (2000) Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57:1601–1607CrossRefGoogle Scholar
  67. Wong TZ, Jones EL, Coleman RE (2004) Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-d-glucose for evaluating local and distant disease in patients with cervical cancer. Mol Imaging Biol 6:55–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rathan M. Subramaniam
    • 3
  • J. M. Davison
    • 1
  • Devaki S. Surasi
    • 1
  • T. Jackson
    • 1
  • T. Cooley
    • 2
  1. 1.Departments of RadiologyBoston University School of MedicineBostonUSA
  2. 2.Departments of OncologyBoston University School of MedicineBostonUSA
  3. 3.Russell H Morgan Departments of Radiology and Radiological Sciences InstitutionsThe Johns Hopkins Medical InstitutionsBaltimore USA

Personalised recommendations