Application of Shielding in CT Radiation Dose Reduction

  • Shima Aran
  • Sarabjeet Singh
  • Mannudeep K. Kalra
Part of the Medical Radiology book series (MEDRAD)


In-plane shields have been shown to reduce CT radiation dose to some of the most radiosensitive organs. However, potential for artifacts and changes in attenuation numbers make their universal use controversial for radiation protection purposes. In this chapter, we discuss advantages and disadvantages of use of in-plane shielding for reducing radiation dose associated with CT scanning.


Radiation Dose Scattered Radiation Radiation Dose Reduction Barium Sulfate Automatic Exposure Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beaconsfield T, Nicholson R, Thornton A, Al-Kutoubi A (1998) Would thyroid and breast shielding be beneficial in CT of the head? Eur Radiol 8(4):664–667PubMedCrossRefGoogle Scholar
  2. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedCrossRefGoogle Scholar
  3. Brnic Z et al (2003) Efficacy of breast shielding during CT of the head. Eur Radiol 13(11):2436–2440PubMedCrossRefGoogle Scholar
  4. Catuzzo P et al (2010) Dose reduction in multislice CT by means of bismuth shields: results of in vivo measurements and computed evaluation. Radiol Med 115(1):152–169PubMedCrossRefGoogle Scholar
  5. Chang KH et al (2010) Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations. Radiat Prot Dosimetry 138(4):382–388PubMedCrossRefGoogle Scholar
  6. Chatterson LC, Leswick DA, Fladeland DA, Hunt MM, Webster ST (2011) Lead versus bismuth-antimony shield for fetal dose reduction at different gestational ages at CT pulmonary angiography. Radiology 260(2):560–579 (Epub ahead of print)PubMedCrossRefGoogle Scholar
  7. Cohnen M et al (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol 13(5):1148–1153PubMedGoogle Scholar
  8. Colombo P et al (2004) Evaluation of the efficacy of a bismuth shield during CT examinations. Radiol Med 108(5–6):560–568PubMedGoogle Scholar
  9. Coursey C et al (2008) Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol 190(1):W54–W61PubMedCrossRefGoogle Scholar
  10. Dauer LT et al (2007) Radiation dose reduction at a price: the effectiveness of a male gonadal shield during helical CT scans. BMC Med Imaging 7:5PubMedCrossRefGoogle Scholar
  11. Dobbs M, Ahmed R, Patrick LE (2011) Bismuth breast and thyroid shield implementation for pediatric CT. Radiol Manage 33(1):18–22 quiz 23–4PubMedGoogle Scholar
  12. Doshi SK, Negus IS, Oduko JM (2008) Fetal radiation dose from CT pulmonary angiography in late pregnancy: a phantom study. Br J Radiol 81(968):653–658PubMedCrossRefGoogle Scholar
  13. Fricke BL DL, Frush DP, Yoshizumi T, Varchena V, Poe SA, Lucaya J (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. Am J Roentgenol 180(2):407–411Google Scholar
  14. Fujibuchi T et al (2004) Shielding effect of protective seats during CT examination. Nippon Hoshasen Gijutsu Gakkai Zasshi 60(12):1730–1738Google Scholar
  15. Geleijns J et al (2006) Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol 16(10):2334–2340PubMedCrossRefGoogle Scholar
  16. Geleijns J, Wang J, McCollough C (2010) The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol 40(11):1744–1747PubMedCrossRefGoogle Scholar
  17. Heaney DE, Norvill CA (2006) A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng Sci Med 29(2):172–178PubMedCrossRefGoogle Scholar
  18. Hein E et al (2002) Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose. Eur Radiol 12(7):1693–1696PubMedCrossRefGoogle Scholar
  19. Hidajat N et al (1996) The efficacy of lead shielding in patient dosage reduction in computed tomography. Rofo 165(5):462–465PubMedCrossRefGoogle Scholar
  20. Hohl C et al (2005) Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield. AJR Am J Roentgenol 184(1):128–130PubMedGoogle Scholar
  21. Hohl C et al (2006) Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol 47(6):562–567PubMedCrossRefGoogle Scholar
  22. Hopper KD (2002) Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin Ultrasound CT MR 23(5):423–427PubMedCrossRefGoogle Scholar
  23. Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS (1997) The breast: in-plane X-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments. Radiology 205(3):853–858PubMedGoogle Scholar
  24. Hopper KD et al (2001) Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol 22(6):1194–1198PubMedGoogle Scholar
  25. Hurwitz LM, Yoshizumi T,, Reiman RE, Goodman PC, Paulson EK, Frush DP, Toncheva G, Nguyen G, Barnes L (2006) Radiation dose to the fetus from body MDCT during early gestation. AJR Am J Roentgenol 186(3):871–876PubMedCrossRefGoogle Scholar
  26. Hurwitz LM et al (2006b) Radiation dose to the female breast from 16-MDCT body protocols. AJR Am J Roentgenol 186(6):1718–1722PubMedCrossRefGoogle Scholar
  27. Iball GR, Kennedy EV, Brettle DS (2008) Modelling the effect of lead and other materials for shielding of the fetus in CT pulmonary angiography. Br J Radiol 81(966):499–503PubMedCrossRefGoogle Scholar
  28. ICRP (2003) ICRP publication 90: biological effects after prenatal irradiation. ICRP, Oxford, UKGoogle Scholar
  29. Kalra MK et al (2004) Strategies for CT radiation dose optimization. Radiology 230(3):619–628PubMedCrossRefGoogle Scholar
  30. Kalra MK et al (2009) In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 10(2):156–163PubMedCrossRefGoogle Scholar
  31. Keil B et al (2008) Protection of eye lens in computed tomography—dose evaluation on an anthropomorphic phantom using thermo-luminescent dosimeters and Monte-Carlo simulations. Rofo 180(12):1047–1053PubMedCrossRefGoogle Scholar
  32. Kennedy EV, Iball GR, Brettle DS (2007) Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol 80(956):631–638PubMedCrossRefGoogle Scholar
  33. Kim S, Frush DP, Yoshizumi TT (2010) Bismuth shielding in CT: support for use in children. Pediatr Radiol 40(11):1739–1743PubMedCrossRefGoogle Scholar
  34. Kojima H, Tsujimura A, Yabe H (2011) Usefulness of the adaptive dose shield for the infant CT. Nippon Hoshasen Gijutsu Gakkai Zasshi 67(1):57–61CrossRefGoogle Scholar
  35. Lee K et al (2010) Dose reduction and image quality assessment in MDCT using AEC (D-DOM & Z-DOM) and in-plane bismuth shielding. Radiat Prot Dosimetry 141(2):162–167PubMedCrossRefGoogle Scholar
  36. Lee YH, Park ET, Cho PK, Seo HS, Je BK, Suh SI, Yang KS (2011) Comparative analysis of radiation dose and image quality between thyroid shielding and unshielding during CT examination of the neck. AJR Am J Roentgenol 196(3):611–615PubMedCrossRefGoogle Scholar
  37. Leswick DA et al (2008) Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology 249(2):572–580PubMedCrossRefGoogle Scholar
  38. Mayo JR, Aldrich J, Muller NL (2003) Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology 228(1):15–21PubMedCrossRefGoogle Scholar
  39. McLaughlin DJ, Mooney RB (2004) Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol 59(5):446–450PubMedCrossRefGoogle Scholar
  40. Mukundan S Jr et al (2007) MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. Am J Roentgenol 188(6):1648–1650CrossRefGoogle Scholar
  41. National Radiological Protection Board RCoR (1998) Diagnostic medical exposures: advice on exposure to ionising radiation during pregnancy. NRPB, Didcot, UKGoogle Scholar
  42. Neeman Z et al (2006) CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol 17(12):1999–2004PubMedCrossRefGoogle Scholar
  43. Ngaile JE et al (2008) Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations. Radiat Prot Dosimetry 130(4):490–498PubMedCrossRefGoogle Scholar
  44. Parker MS, Chung JK, Fatouros PP, Hoots JA, Kelleher NM, Benedict SH (2006) Reduction of radiation dose to the female breast: Preliminary data with a custom-designed tungsten-antimony composite breast shield. Journal of Applied Research 6(3):230–239Google Scholar
  45. Parker MS et al (2008) Absorbed radiation dose of the female breast during diagnostic multidetector chest CT and dose reduction with a tungsten-antimony composite breast shield: preliminary results. Clin Radiol 63(3):278–288PubMedCrossRefGoogle Scholar
  46. Perisinakis K et al (2005) Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study. Med Phys 32(4):1024–1030PubMedCrossRefGoogle Scholar
  47. Preston DL et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64PubMedCrossRefGoogle Scholar
  48. Price R, Halson P, Sampson M (1999) Dose reduction during CT scanning in an anthropomorphic phantom by the use of a male gonad shield. Br J Radiol 72(857):489–494PubMedGoogle Scholar
  49. Raissaki M et al (2010) Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol 40(11):1748–1754PubMedCrossRefGoogle Scholar
  50. Romanowski CA, Underwood AC, Sprigg A (1994) Reduction of radiation doses in leg lengthening procedures by means of audit and computed tomography scanogram techniques. Br J Radiol 67(803):1103–1107PubMedCrossRefGoogle Scholar
  51. Rubin P, Casarett GW (1968) Clinical radiation pathology as applied to curative radiotherapy. Cancer 22(4):767–778PubMedCrossRefGoogle Scholar
  52. Schonfeld SJ, Lee C, Berrington de Gonzalez A (2011) Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol) 23(4):244–250CrossRefGoogle Scholar
  53. Takada K, Kaneko J, Aoki K (2009) Breast dose reduction in female CT screening for lung cancer using various metallic shields. Nippon Hoshasen Gijutsu Gakkai Zasshi 65(12):1628–1637CrossRefGoogle Scholar
  54. The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37(2–4):1–332Google Scholar
  55. Tsujino K et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55(1):110–115PubMedCrossRefGoogle Scholar
  56. Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18(8):1674–1682PubMedCrossRefGoogle Scholar
  57. Winer-Muram HT et al (2002) Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT. Radiology 224(2):487–492PubMedCrossRefGoogle Scholar
  58. Yi A et al (2010) Optimal multidetector row CT parameters for evaluations of the breast: a phantom and specimen study. Acad Radiol 17(6):744–751PubMedCrossRefGoogle Scholar
  59. Yilmaz MH et al (2007a) Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol 61(1):139–143PubMedCrossRefGoogle Scholar
  60. Yilmaz MH et al (2007b) Female breast radiation exposure during thorax multidetector computed tomography and the effectiveness of bismuth breast shield to reduce breast radiation dose. J Comput Assist Tomogr 31(1):138–142PubMedCrossRefGoogle Scholar
  61. Yousefzadeh DK, Ward MB, Reft C (2006) Internal barium shielding to minimize fetal irradiation in spiral chest CT: a phantom simulation experiment. Radiology 239(3):751–758PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shima Aran
    • 1
  • Sarabjeet Singh
    • 1
  • Mannudeep K. Kalra
    • 1
  1. 1.Department of RadiologyHarvard Medical School, Massachusetts General HospitalBostonUSA

Personalised recommendations