Collective Radiation Dose from MDCT: Critical Review of Surveys Studies

  • Georg Stamm
Part of the Medical Radiology book series (MEDRAD)


Large-scale surveys were used to establish reference dose levels (RDL) for typical CT examinations. The different findings in different countries will be compared and discussed with respect to the statistical values used. While the third quartile values of surveys are well-established to define dose levels that 75% of the users can easily maintain, it has been suggested by several authors to use the first quartile value for optimization processes defining those dose levels which can be achieved using modern technique, appropriate settings for the scan parameters and good practice. Interpretation of collected data and comparison of results of several surveys will be done with a special focus on pediatric issues. While RDLs for adult have been published frequently and have also been already updated using new data from either more recent surveys or by interpreting data from smaller samples it appears that RDL for CT examination of children have been rarely addressed in the past. Only more recent publications in 2008–2010 have recognized this issue and RDL for pediatric CT exams have now been published for a larger number of countries. For a quick estimate of patient dose and risk conversion factors from dose length product (DLP) to effective dose (f in mSv/(mGy*cm)) can be used. The various published values for children of different ages will be compared with respect to limitations and in correlation with the findings for adult patients. The effectiveness of surveys regarding dose reduction and optimization has been reviewed. The main conclusion is that although RDLs for conventional X-ray examinations have been remarkably decreased (in mean between 30 and 35%) the RDLs for CT exams have remained nearly constant in several countries or even slightly increased. Some new approaches for automatic extraction of dose values from DICOM metadata show great potential for continuous monitoring and optimization processes once all technical restrictions are solved or simplified.


Effective Dose Thin Slice Dose Length Product International Electrotechnical Commission Collective Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Large-Scale Surveys

  1. Aroua A, Vader J-P, Valley J-F (2000) Survey on exposure by radiodiagnostics in Switzerland in 1998.
  2. Bernhardt J, Veit R, Bauer B (1995) Erhebung zur Strahlenexposition der Patienten bei der Röntgendiagnostik. Z Med Phys 5:33–39Google Scholar
  3. Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, Galanski M (2003) Radiation exposure in multi-slice versus single slice CT: results of a nationwide survey. Eur Radiol 13:1979–1991PubMedCrossRefGoogle Scholar
  4. Conway BJ, McCrohan JL, Antonson RG, Rueter FG, Slayton RJ, Suleiman OH (1992) Average radiation dose in standard CT examinations of the head: results of the 1990 next survey. Radiology 184:135–140PubMedGoogle Scholar
  5. Galanski M, Nagel HD, Stamm G (2001) CT-Expositionspraxis in der Bundesrepublik Deutschland. Ergebnisse einer bundesweiten Umfrage im Jahre 1999. Fortschr Röntgenstr 173:R1–R66CrossRefGoogle Scholar
  6. Hart D, Wall BF (2001) Radiation exposure of the UK population from medical and dental X-ray exmaninations, NRBP-W4.
  7. Meeuwsen E, Brugmans M (2002) Gegevens over medische stralingstoepassingen: van ziekenhuisquêtes tot zorgverzekeraars. RIVM Rapport nr. 610059 009, Bilthoven.
  8. Meeuwsen E, Brugmans M (2003) Radiation exposure or the Dutch population from medical examinations. In: Proceedings of radiation protection symposium of the North West RP societies, Utrecht, pp 273–278Google Scholar
  9. National Radiological Protection Board (1999) Guidelines on patient dose to promote the optimisation of protection for diagnostic medical exposures, documents of the NRPB, vol 10, no. 1Google Scholar
  10. Nowotny R (2005) Entwicklung und Vergleich von Methoden zur Ermittlung und Überprüfung von Dosisreferenzwerten in der Röntgendiagnostik gemäß Patientenschutzrichtlinie EU 97/43 im Auftrag des Bundesministerium für Soziale Sicherheit und Generationen.
  11. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2005) Doses from computed tomography (CT) examinations in the UK—2003 Review, NRPB-W67.
  12. Shrimpton PC (2002) Assessment of patient dose in CT, NRPB-PE/1/2004. Chilton, NRBP. Also published as Appendix C or the 2004 CT Quality Criteria (MSCT, 2004).
  13. Thomson JEM, Tingey DRC (1997) radiation doses from computed tomography in Australia, ARL/TR 123Google Scholar

Small-Scale Surveys

  1. Einarsson G, Magnusson S (2001) Patient dose and examination frequency for diagnostic radiology in Iceland 1993–1998. In: Radiological protection of patients in diagnostic radiology, nuclear medicine and radiotherapy, proceedings of an IAEA-CN-85 international conference held in Malaga, SpainGoogle Scholar
  2. Friberg EG (2003) Dual and multi slice CT—what about the doses, proceedings radiation protection, symposium of the North West RP societies, Utrecht, pp 193–196Google Scholar
  3. Goddard CC, Al-Farsi A (1999) Radiation doses from CT in the Sultanate of Oman. BJR 72:1073–1077PubMedGoogle Scholar
  4. Hatziioannou K, Papanastassiou E, Delichas M, Bousbouras P (2003) A contribution to the establishment of diagnostic reference levels in CT. BJR 76:541–545PubMedCrossRefGoogle Scholar
  5. Olerud HM (1997) Analysis of factors influencing patient doses from CT in Norway. Rad Prot Dosim 71:123CrossRefGoogle Scholar
  6. Olerud HM CT-dose surveys. In: Proceedings of radiation protection symposium of the North West RP Societies, Utrecht, pp 178–192Google Scholar
  7. Olerud HM, Torp CG, Einarsson G et al (2001) Use of the EC quality criteria as a common method of inspecting CT laboratories—a pilot project by the Nordic radiation protection authorities. In: Radiological protection of patients in diagnostic radiology, nuclear medicine and radiotherapy, proceedings of an IAEA-CN-85 international conference held in Malaga, SpainGoogle Scholar
  8. Origgi D, Vigorito S, Villa G, Bellomi M (2006) Survey of computed tomography techniques and absorbed dose in Italian hospitals: a comparison between two methods to estimate the dose-length product and the effective dose to verify fulfilment of the diagnostic reference levels. Eur Radiol 16:227–237PubMedCrossRefGoogle Scholar
  9. Papadimitriou D, Perris A, Manetou A et al (2003) A survey of 14 computed tomography scanners in Greece and 32 scanners in Italy: examination frequencies, dose reference values, effective doses and doses to organs. Rad Prot Dosim 104:47–53CrossRefGoogle Scholar
  10. Scheck R, Coppenrath EM, Bäuml A, Hahn K (1998)) Radiation dose and image quality in spiral computed tomography: results of a multicentre study at eight radiological institutions. Rad Prot Dosim 80:283–286CrossRefGoogle Scholar
  11. Hiles PA, Brennen SE, Scott SA, Davies JH (2001) A survey of patient dose and image quality for computed tomography in Wales. J Radiol Prot 21:345–354PubMedCrossRefGoogle Scholar
  12. Shrimpton PC, Jessen KA, Geleijns J, Panzer W, Tosi G (1998) Reference dose in computed tomography. Rad Prot Dosim 80:55–59CrossRefGoogle Scholar
  13. Szendrö G, Axelsson B, Leitz W (1995) Computed tomography practice in Sweden: quality control, techniques and patient dose. Rad Prot Dosim 57:469–473Google Scholar
  14. Tsapaki V, Kottou S, Papadimitriou D (2001) Application of the European Commission reference dose levels in CT examinations in Crete, Greece. BJR 74:836–840PubMedGoogle Scholar
  15. van Unnik JG, Broerse JJ, Geleijins J et al (1997) Survey of CT techniques and absorbed dose in various Dutch hospitals. BJR 70:367–371PubMedGoogle Scholar

Guidelines, Reference Dose Levels

  1. Bundesamt für Strahlenschutz (2004) Bekanntmachung der diagnostischen Referenzwerte für radiologische und nuklearmedizinische Untersuchungen vom 10. Juli 2003, Bundesanzeiger Nummer 143 vom 5.8.2003, pp 17503–7504Google Scholar
  2. CT quality criteria (2004) (A 6th framework research project of the European Commission).
  3. European Commission (1999) European guidelines on quality criteria for computed tomography, Report EUR 16262 EN, Luxembourg, office for official publications of the European communities, pp 69–78.
  4. International Electrotechnical Commission (IEC) (2001) Medical electrical equipment–Part 2: particular requirements for the safety of X-ray equipment for computed tomography, IEC-Standard 60601-2-44 Ed. 2.0, GenevaGoogle Scholar
  5. Nagel HD (2010) Leitfaden zur Bewertung und Optimierung der Strahlenexposition bei CT-Untersuchungen

Publications on Paediatric CT

  1. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric ct: a rational approach. Radiology 228:352–360PubMedCrossRefGoogle Scholar
  2. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR 176:289–296PubMedGoogle Scholar
  3. Chapple C-L, Willis S, Frame J (2002) Effective dose in paediatric computed tomography. Phys Med Biol 47:107–115PubMedCrossRefGoogle Scholar
  4. Cody DD, Moxley DM, Krugh KT, O’Daniel CJ, Wagner LK, Eftekhari F (2004) Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. AJR 182:849–859PubMedGoogle Scholar
  5. Donnelly LF, Emery KH, Brody AS (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR 176:303–306PubMedGoogle Scholar
  6. Hollingsworth C, Frush DP, Cross M, Lucaya J (2003) Helical CT of the body: a survey of techniques used for pediatric patients. AJR 180:401–406PubMedGoogle Scholar
  7. Huda W (2002) Dose and image quality in CT. Pediatr Radiol 32:709–713PubMedCrossRefGoogle Scholar
  8. Khursheed A, Hillier MC, Shrimpton PC, WALL BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. BJR 75:819–830PubMedGoogle Scholar
  9. Linton AW, Mettler FA Jr (2003) National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR 181:321–329PubMedGoogle Scholar
  10. Pages J, Buls N, Osteaux M (2003) CT doses in children: a multicentre study. BJR 76:803–811PubMedCrossRefGoogle Scholar
  11. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR 176:297–301PubMedGoogle Scholar
  12. Sandstede J (2003) Pediatric CT.
  13. Shrimpton PC, Wall BF (2000) Reference doses for paediatric CT. Rad Prot Dosim 90:249–252CrossRefGoogle Scholar
  14. Suess Ch, Chen X (2002) Dose optimization in pediatric CT: current technology and future innovations. Pediatr Radiol 32:729–734PubMedCrossRefGoogle Scholar
  15. Verdun FR, Lepori D, Monnin P, Valley J-F, Schnyder P, Gudinchet F (2004) Management of patient dose and image noise in routine pediatric CT abdominal examinations. Eur Radiol 14:835–841PubMedCrossRefGoogle Scholar
  16. Vock P (2005) CT dose reduction in children. Eur Radiol 15:2330–2340PubMedCrossRefGoogle Scholar

New Reference for Second Edition

  1. Alesso AM, Phillips GS (2010) A pediatric CT dose and risk estimator. Pediatr Radiol 40:1816–1821CrossRefGoogle Scholar
  2. Aroua A, Besançon A, Buchillier-Decka I et al (2004) Adult reference levels in diagnostic and interventional radiology for temporary use in Switzerland. Rad Prot Dosim 111:289–295CrossRefGoogle Scholar
  3. Early results from new dose survey unveiled at UKRC meeting (2011)
  4. Galanski M, Nagel H.D, Stamm G (2006) Paediatric CT exposure practice in the federal republic of Germany, results of a nation-wide survey in 2005/2006.
  5. German National Radiation Protection Board (Bundesamt für Strahlenschutz) (2010). Diagnostic reference dose levels.
  6. Health Service Executive (2011), Population dose from CT scanning 2009.
  7. Jahnen A, Kohler S, Hermen J, Tack D, Back C (2011) Automatic computed tomography patient dose calculation using DICOM Header Metadata; Rad Prot Dosim, doi: 10.1093/rpd/ncr338
  8. Kharita MH, Khazzam S (2010) Survey of patient dose in computed tomography in Syria 2009. Rad Prot Dosim 141:149–161CrossRefGoogle Scholar
  9. Livingstone RS, Dinakaran PM (2009) Regional survey of CT dose indices in India. Rad Prot Dosim 136:222–227CrossRefGoogle Scholar
  10. Meeson S, Shrimpton PC, MacLachlan SA, Golding SJ (2011) Update on radiation exposure from CT: Early progress in the third UK CT dose survey.
  11. Muhogora WE, Ahmed NA et al (2010) Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Rad Prot Dosim 140:49–58CrossRefGoogle Scholar
  12. Ono K, Ban N, Ojima M, Yoshinaga S et al (2011) Nationwide survey on pediatric CT among children of public health and school nurses to examine a possibility for a follow-up study on radiation effects. Rad Prot Dosim 146:260–262CrossRefGoogle Scholar
  13. Pantos I, Thalassinou S, Argentos S, Kelekis NL, Panayiotakis G, Efstathopoulos EP (2011) Adult patient radiation doses from non-cardiac CT examinations: a review of published results. BJR 84:293–303PubMedCrossRefGoogle Scholar
  14. Treier R, Aroua A, Verdun F et al (2010) Patient doses in CT examinations in Switzerland: implementation of national diagnostic reference levels. Rad Prot Dosim 142:244–254CrossRefGoogle Scholar
  15. Tung CJ, Yang CH, Yeh CY, Chen TR (2011) Population dose from medical diagnostic exposure in Taiwan. Rad Prot Dosim 146:248–251CrossRefGoogle Scholar
  16. UNSCEAR Report (2000) Annex D, Medical radiation exposure, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Medizinische Hochschule HannoverInstitut für Diagnostische und Interventionelle RadiologieHannoverGermany

Personalised recommendations