Central Nervous System

  • Jeffrey A. Miller
  • Terence Z. Wong
Part of the Medical Radiology book series (MEDRAD)


FDG-PET imaging has a defined role in the management of primary brain tumors. In contrast to other tumors, the primary role of FDG-PET imaging is to identify high-grade tumor. This task is complicated by the high background glucose metabolism present in normal cerebral cortex and gray matter structures. In general, high-grade brain neoplasms have FDG accumulation similar to cortical gray matter, while low-grade tumors have uptake more similar to white matter. As a consequence, accurate anatomic localization (preferably MRI) is necessary to identify areas of suspected tumor, so that corresponding FDG uptake within the abnormality can be evaluated. Tumor grade assessment by FDG-PET has prognostic implications for initial evaluation of brain tumor patients, and can be useful for evaluating patients for high-grade tumor recurrence following therapy. Other PET tracers under investigation will potentially have an increasingly important role as new treatment strategies are developed to manage primary brain tumors.


Positron Emission Tomography Positron Emission Tomography Imaging Pilocytic Astrocytoma Primary Brain Tumor Radiation Necrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6):1074–1078PubMedCrossRefGoogle Scholar
  2. Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD (2009) Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95(1):1–11PubMedCrossRefGoogle Scholar
  3. Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79(1):115–126PubMedCrossRefGoogle Scholar
  4. Becherer A, Karanikas G, Szabó M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P, Czech T, Wadsak W, Kletter K (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11):1561–1567PubMedCrossRefGoogle Scholar
  5. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361(9354):323–331PubMedCrossRefGoogle Scholar
  6. Bondy ML et al (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(7 Suppl):1953–1968PubMedCrossRefGoogle Scholar
  7. Burton EC, Prados MD (2000) Malignant gliomas. Curr Treat Options Oncol 1(5):459–468PubMedCrossRefGoogle Scholar
  8. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197PubMedCrossRefGoogle Scholar
  9. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6):904–911PubMedGoogle Scholar
  10. Cher LM, Murone C, Lawrentschuk N, Ramdave S, Papenfuss A, Hannah A, O’Keefe GJ, Sachinidis JI, Berlangieri SU, Fabinyi G, Scott AM (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47(3):410–418PubMedGoogle Scholar
  11. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, Ra YS, Yeo JS, Ryu JS, Moon DH (2005) [18F]3’-deoxy-3’-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32(6):653–659PubMedCrossRefGoogle Scholar
  12. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29(2):176–182PubMedCrossRefGoogle Scholar
  13. Croteau D, Mikkelsen T (2001) Adults with newly diagnosed high-grade gliomas. Curr Treat Options Oncol 2(6):507–515PubMedCrossRefGoogle Scholar
  14. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165PubMedCrossRefGoogle Scholar
  15. De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, Hildebrand J, Brotchi J, Goldman S (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-d-glucose in the low-grade glioma. Neurosurgery 39(3):470–476; discussion 476–477Google Scholar
  16. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1):47–52PubMedGoogle Scholar
  17. Derlon JM, Chapon F, Noël MH, Khouri S, Benali K, Petit-Taboué MC, Houtteville JP, Chajari MH, Bouvard G (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7):778–787PubMedCrossRefGoogle Scholar
  18. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Roentgenol 150(1):189–197Google Scholar
  19. Floeth FW, Sabel M, Stoffels G, Pauleit D, Hamacher K, Steiger HJ, Langen KJ (2008) Prognostic value of 18F-fluoroethyl-l-tyrosine PET and MRI in small nonspecific incidental brain lesions. J Nucl Med 49(5):730–737PubMedCrossRefGoogle Scholar
  20. Foo SS, Abbott DF, Lawrentschuk N et al (2004) Functional imaging of intra-tumoral hypoxia. Mol Imaging Biol 6:291–305PubMedCrossRefGoogle Scholar
  21. Fulham MJ, Brunetti A, Aloj L, Raman R, Dwyer AJ, Di Chiro G (1995) Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg 83(4):657–664PubMedCrossRefGoogle Scholar
  22. Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, Herndon JE 2nd, Meisler WJ, Schold SC Jr (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Neurology 29(4):347–355Google Scholar
  23. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, Stanus E, Brotchi J, Hildebrand J (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78(5):1098–1106PubMedCrossRefGoogle Scholar
  24. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, Dethy S, Brotchi J, Hildebrand J (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38(9):1459–1462PubMedGoogle Scholar
  25. Hanson MW, Glantz MJ, Hoffman JM, Friedman AH, Burger PC, Schold SC, Coleman RE (1991) FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 15(5):796–801PubMedCrossRefGoogle Scholar
  26. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, Coleman RE (1993) FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 34(4):567–575PubMedGoogle Scholar
  27. Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? J Nucl Med 26(11):1501–1509CrossRefGoogle Scholar
  28. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA (2008) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42(3):432–445Google Scholar
  29. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249PubMedCrossRefGoogle Scholar
  30. Kaal EC, Niël CG, Vecht CJ (2005) Therapeutic management of brain metastasis. Lancet Neurol 4(5):289–298PubMedCrossRefGoogle Scholar
  31. Kim DW, Jung SA, Kim CG, Park SA (2010) The efficacy of dual time point F-18 FDG PET imaging for grading of brain tumors. Clin Nucl Med 35(6):400–403PubMedCrossRefGoogle Scholar
  32. Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H (2008) 18F-FDG PET of common enhancing malignant brain tumors. Am J Roentgenol 190(6):W365–W369CrossRefGoogle Scholar
  33. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10(21):7163–7170PubMedCrossRefGoogle Scholar
  34. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244(2):557–565PubMedCrossRefGoogle Scholar
  35. Larcos G, Maisey MN (1996) FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun 17(3):197–198PubMedCrossRefGoogle Scholar
  36. Laverman P, Boerman OC, Corstens FH, Oyen WJ (2002) Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 29(5):681–690PubMedCrossRefGoogle Scholar
  37. Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, Uemura K (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73(9):2386–2394PubMedCrossRefGoogle Scholar
  38. Minn H (2005) PET and SPECT in low-grade glioma. Eur J Radiol 56(2):171–178PubMedCrossRefGoogle Scholar
  39. Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, Blasberg R (1998) “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 18(5):500–509PubMedCrossRefGoogle Scholar
  40. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103(3):498–507PubMedCrossRefGoogle Scholar
  41. Nelson JS, Tsukada Y, Schoenfeld D, Fulling K, Lamarche J, Peress N (1983) Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas. Cancer 52(3):550–554PubMedCrossRefGoogle Scholar
  42. Ohgaki H (2009) Epidemiology of brain tumors. Methods Mol Biol 472:323–342PubMedCrossRefGoogle Scholar
  43. Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64(3):227–237PubMedCrossRefGoogle Scholar
  44. Pardo FS, Aronen HJ, Fitzek M, Kennedy DN, Efird J, Rosen BR, Fischman AJ (2004) Correlation of FDG-PET interpretation with survival in a cohort of glioma patients. Anticancer Res 24(4):2359–2365PubMedGoogle Scholar
  45. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6):816–822PubMedCrossRefGoogle Scholar
  46. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36(7):779–787PubMedCrossRefGoogle Scholar
  47. Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nußbaumer K, Topakian R, Aigner RM (2010) Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur J Nucl Med Mol Imaging. 16 Apr 2010. [Epub ahead of print]Google Scholar
  48. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, Salmon I, Brotchi J, Levivier M (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45(8):1293–1298PubMedGoogle Scholar
  49. Pöpperl G, Götz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- l-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31(11):1464–1470PubMedCrossRefGoogle Scholar
  50. Rachinger W, Goetz C, Pöpperl G, Gildehaus FJ, Kreth FW, Holtmannspötter M, Herms J, Koch W, Tatsch K, Tonn JC (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511; discussion 505−511Google Scholar
  51. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Långström B, Bolander H, Bergström M, Smits A (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92(6):1541–1549PubMedCrossRefGoogle Scholar
  52. Roelcke U, Blasberg RG, von Ammon K, Hofer S, Vontobel P, Maguire RP, Radü EW, Herrmann R, Leenders KL (1998) Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med 39(5):879–884PubMedGoogle Scholar
  53. Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Higashi T, Oya N, Mukai T, Hojo M, Hashimoto N, Manabe T, Hiraoka M, Togashi K (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31(12):774–780PubMedCrossRefGoogle Scholar
  54. Salskov A, Tammisetti VS, Grierson J, Vesselle H (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med 37(6):429–439PubMedCrossRefGoogle Scholar
  55. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10(1):1–18PubMedCrossRefGoogle Scholar
  56. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45(10):1653–1659PubMedGoogle Scholar
  57. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, Adamsen TC, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630PubMedCrossRefGoogle Scholar
  58. Stieber VW (2001) Low-grade gliomas. Curr Treat Options Oncol 2(6):495–506PubMedCrossRefGoogle Scholar
  59. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699PubMedCrossRefGoogle Scholar
  60. Tripathi M, Sharma R, D’Souza M, Jaimini A, Panwar P, Varshney R, Datta A, Kumar N, Garg G, Singh D, Grover RK, Mishra AK, Mondal A (2009) Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 34(12):878–883PubMedCrossRefGoogle Scholar
  61. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055PubMedCrossRefGoogle Scholar
  62. Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37(6):400–419PubMedCrossRefGoogle Scholar
  63. Vecht CJ, Haaxma-Reiche H, Noordijk EM, Padberg GW, Voormolen JH, Hoekstra FH, Tans JT, Lambooij N, Metsaars JA, Wattendorff AR et al (1993) Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 33(6):583–590PubMedCrossRefGoogle Scholar
  64. Wang SX, Boethius J, Ericson K (2006) FDG-PET on irradiated brain tumor: ten years’ summary. Acta Radiol 47(1):85–90PubMedCrossRefGoogle Scholar
  65. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5):542–549PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Division of Nuclear Medicine, Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations