Advertisement

Cardiovascular Modeling

  • Giovanni Biglino
  • Silvia Schievano
  • Vivek Muthurangu
  • Andrew Taylor
Part of the Medical Radiology book series (MEDRAD)

Abstract

Modeling of the cardiovascular system is increasingly used to provide information that is not easily measured in humans or that can be used to predict treatment outcomes. Importantly, cardiac MRI can not only provide much of the data necessary to build such models, but can also be used to provide much of the data necessary to validate these processes. This will be a relatively novel area of work for most in the field of imaging, and this chapter will outline the basic principles and types of models that are currently available, and demonstrate their use with in specific examples.

Keywords

Mitral Valve Computational Fluid Dynamic Particle Image Velocimetry Cardiac Resynchronization Therapy Superior Vena Cava 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to gratefully acknowledge Fondation Leducq, British Heart Foundation, Royal Academy of Engineering/EPSRC and National Institute for Health Research UK for their support.

References

  1. Aggarwal NR, Martinez MW, Gersh BJ, Chareonthaitawee P (2009) Role of cardiac MRI and nuclear imaging in cardiac resynchronization therapy. Nat Rev Cardiol 6(12):759–770PubMedCrossRefGoogle Scholar
  2. Arevalo H, Rodriguez B, Trayanova N (2007) Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Chaos 17(1):015103PubMedCrossRefGoogle Scholar
  3. Bagnoli P, Malagutti N, Gastaldi D, Marcelli E, Lui E, Cercenelli L, Costantino ML, Plicchi G, Fumero R (2011) Computational finite element model of cardiac torsion. Int J Artif Organs 34(1):44–53PubMedCrossRefGoogle Scholar
  4. Biglino G, Kolyva C, Whitehorne M, Pepper JR, Khir AW (2010) Variations in aortic pressure affect the mechanics of the intra-aortic balloon: an in vitro investigation. Artif Organs 34(7):546–553PubMedCrossRefGoogle Scholar
  5. Biglino G, Schievano S, Baker C, Giardini A, Figliola R, Taylor AM, Hsia TY (2011a) A patient-specific paediatric mock circulatory system: investigating the circulation following the Norwood procedure. ASAIO J–Abstracts of the 57th annual conference 57(2):69–105Google Scholar
  6. Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S (2011b) Quantification of TangoPlus FullCure 930® compliance for printing patient-specific vascular models. ASAIO J–Abstracts of the 57th annual conference 57(2):69–105Google Scholar
  7. Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, Acar P, Le Bidois J, Sidi D, Kachaner J (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356(9239):1403–1405PubMedCrossRefGoogle Scholar
  8. Bonhoeffer P, Huynh R, House M, Douk N, Kopcak M, Hill A, Rafiee N (2008) Transcatheter pulmonic valve replacement in sheep using a grafted self-expanding stent with tissue valve. Circulation 118:S_812Google Scholar
  9. Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J Biomech Eng 132(11):111005PubMedCrossRefGoogle Scholar
  10. Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrom. J Thorac Cardiovasc Surg 126(4):1040–1047PubMedCrossRefGoogle Scholar
  11. Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia TY, Dubini G (2008) Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 136(2):312–320PubMedCrossRefGoogle Scholar
  12. Bowles CT, New SEP, Van Loon R, Dreger SA, Biglino G, Chan C, Parker KH, Chester AH, Yacoub MH, Taylor PM (2010) Hydrodynamic evaluation of a bioreactor for tissue engineering heart valves. Cardiovascular Eng Technol 1(1):10–17CrossRefGoogle Scholar
  13. Bowles CT, Shah SS, Nishimura K, Clark C, Cumming DV, Pattison CW, Pepper JR, Yacoub MH (1991) Development of mock circulation models for the assessment of counterpulsation systems. Cardiovasc Res 25(11):901–908PubMedCrossRefGoogle Scholar
  14. Breinholt JP, Nugent AW, Law MA, Justino H, Mullins CE, Ing FF (2008) Stent fractures in congenital heart disease. Catheter Cardiovasc Interv 72(7):977–982PubMedCrossRefGoogle Scholar
  15. Buonocore MH, Bogren HG (1999) Analysis of flow patterns using MRI. Int J Card Imaging 15(2):99–103PubMedCrossRefGoogle Scholar
  16. Burkart DJ, Felmlee JP, Johnson CD, Wolf RL, Weaver AL, Ehman RL (1994) Cine phase-contrast MR flow measurements: improved precision using an automated method of vessel detection. J Comput Assist Tomogr 18(3):469–475PubMedCrossRefGoogle Scholar
  17. Camp TA, Stewart KC, Figliola RS, McQuinn T (2007) In vitro study of flow regulation for pulmonary insufficiency. J Biomech Eng 129(2):284–288PubMedCrossRefGoogle Scholar
  18. Camus JM, Campomar G, D’Attellis C, Silvestrini M, Varela L, De Forteza E (2007) In vitro evaluation of an axial flow pump: mock-pump interaction and an approach to control. Int J Artif Organs 30(1):34–43PubMedGoogle Scholar
  19. Capelli C, Nordmeyer J, Schievano S, Lurz P, Khambadkone S, Lattanzio S, Taylor AM, Petrini L, Migliavacca F, Bonhoeffer P (2010a) How do angioplasty balloons work: a computational study on balloon expansion forces. EuroIntervention 6(5):638–642CrossRefGoogle Scholar
  20. Capelli C, Taylor AM, Migliavacca F, Bonhoeffer P, Schievano S (2010b) Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos Transact A Math Phys Eng Sci 368(1921):3027–3038Google Scholar
  21. Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterisation of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32(1):145–151PubMedGoogle Scholar
  22. Chaichana T, Sun Z, Jewkes J (2011) Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech [Epub ahead of print]Google Scholar
  23. Chapman SJ (2009) Multiscale mathematical modelling in medicine and biology. Proceedings of the 18th world IMACS/MODSIM congress, Cairns, Australia, 13–17th July, pp 13–22Google Scholar
  24. Chen HY, Zhu L, Huo Y, Liu Y, Kassab GS (2010) Fluid-structure interaction (FSI) modeling in the cardiovascular system. In: Computational cardiovascular mechanics − Modeling and application in heart failure. Eds. Guccione JM, Kassab GS, Ratcliffe MB. Springer, New York, USAGoogle Scholar
  25. Chiulli JA, Conover T, Xue Z, Zhao Y, Hsia TY, Figliola RS (2012) An in vitro multi-scale model of the Fontan circulation with respiration effects. J Biomech Eng (in press)Google Scholar
  26. Coats L, Khambadkone S, Derrick G, Sridharan S, Schievano S, Mist B, Jones R, Deanfield JE, Pellerin D, Bonhoeffer P, Taylor AM (2006) Physiological and clinical consequences of relief of right ventricular outflow tract obstruction late after repair of congenital heart defects. Circulation 113(17):2037–2044PubMedCrossRefGoogle Scholar
  27. Cook RD, Malkus DS, Plesha Witt RJ (2002) Concepts and applications of finite element analysis. 4th edition. Wiley, New YorkGoogle Scholar
  28. Corsini C, Cosentino D, Pennati G, Dubini G, Hsia T-Y, Migliavacca F (2011) Multiscale models of the hybdrid palliation for hypoplastic left heart syndrome. J Biomech 44(4):767–770PubMedCrossRefGoogle Scholar
  29. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23PubMedGoogle Scholar
  30. De Paulis R, Schmitz C, Scaffa R, Nardi P, Chiariello L, Reul H (2005) In vitro evaluation of aortic valve prosthesis in a novel valved conduit with pseudosinuses of Valsalva. J Thorac Cardiovasc Surg 130(4):1016–1021PubMedCrossRefGoogle Scholar
  31. de Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011a) Fluid-structure interaction of deformable aortic prostheses with a bileaflet mecanical valve. J Biomech 44(9):1684–1690CrossRefGoogle Scholar
  32. de Tullio MD, Pascazio G, Weltert L, De Paulis R, Verzicco R (2011b) Evaluation of prosthetic-valved devices by means of numerical simulations. Philos Transact A Math Phys Eng Sci 369(1945):2502–2509CrossRefGoogle Scholar
  33. de Zélicourt DA, Haggerty CM, Sundareswaran KS, Whited BS, Rossignac JR, Kanter KR, Gaynor JW, Spray TL, Sotiropoulos F, Fogel MA, Yoganathan AP (2011) Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J Thorac Cardiovasc Surg 141(5):1170–1177PubMedCrossRefGoogle Scholar
  34. de Zélicourt DA, Pekkan K, Wills L, Kanter K, Forbess J, Sharma S, Fogel M, Yoganathan AP (2005) In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Ann Thorac Surg 79(6):2094–2102PubMedCrossRefGoogle Scholar
  35. Douglas WI, Goldberg CS, Mosca RS, Law IH, Bove EL (1999) Hemi-Fontan procedure for hypoplastic left heart syndrome: outcome and suitability for Fontan. Ann Thorac Surg 68(4):1361–1367PubMedCrossRefGoogle Scholar
  36. Duckett SG, Chiribiri A, Ginks MR, Sinclair S, Knowles BR, Botnar R, Carr-White GS, Rinaldi CA, Nagel E, Razavi R, Schaeffter T (2011) Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. J Magn Reson Imaging 33(1):87–95PubMedCrossRefGoogle Scholar
  37. Duckett SG, Ginks M, Knowles BR, Chiribiri A, Ma YL, Razavi R, Schaeffter T, Carr-White G, Rinaldi CA, Rhode K (2010) A novel cardiac MRI protocol to guide successful cardiac resynchronization therapy implantation. Circ Heart Fail 3(4):e18–e21PubMedCrossRefGoogle Scholar
  38. Dumont K, Yperman J, Verbeken E, Segers P, Meuris B, Vandenberghe S, Flameng W, Verdonck PR (2002) Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif Organs 26(8):710–714PubMedCrossRefGoogle Scholar
  39. Einstein DR, Del Pin F, Jiao X, Kuprat AP, Carson JP, Kunzelman KS, Cochran RP, Guccione JM, Ratcliffe MB (2010) Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int J Numer Methods Eng 26(3–4):348–380PubMedGoogle Scholar
  40. Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP (1999) Toward designing the optimal total cavopulmonary connection: an in vitro study. Ann Thorac Surg 68(4):1384–1390PubMedCrossRefGoogle Scholar
  41. Filipovic N, Schima H (2011) Numerical simulation of the flow field within the aortic arch during cardiac assist. Artif Organs 35(4):E73–E83PubMedCrossRefGoogle Scholar
  42. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB (1987) In vivo validation of MR velocity imaging. J Comput Assist Tomogr 11(5):751–756PubMedCrossRefGoogle Scholar
  43. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248PubMedCrossRefGoogle Scholar
  44. Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the vascular system: a preliminary analysis. Comp Visc Sci 2:75–83CrossRefGoogle Scholar
  45. Frank O (1899) Die Grundform des arteriellen Pulses. Zeitschrift fur Biologie 27:483–526Google Scholar
  46. Fries R, Graeter T, Aicher D, Reul H, Schmitz C, Böhm M, Schäfers HJ (2006) In vitro comparison of aortic valve movement after valve-preserving aortic replacement. J Thorac Cardiovasc Surg 132(1):32–37PubMedCrossRefGoogle Scholar
  47. Galantowicz M, Cheatham JP (2005) Lessons learned from the development of a new hybrid strategy for the management of hypoplastic left heart syndrome. Pediatr Cardiol 26(3):190–199CrossRefGoogle Scholar
  48. Gao H, Long Q, Graves M, Gillard JH, Li ZY (2009) Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in vivo magnetic resonance images of four patients. J Biomech 42(10):1416–1423PubMedCrossRefGoogle Scholar
  49. Garny A, Noble D, Kohl P (2005) Dimensionality in cardiac modeling. Prog Biophys Mol Biol 87(1):47–66PubMedCrossRefGoogle Scholar
  50. Gohean J, Figliola R, Camp T, McQuinn T (2006) Comparative in vitro study of bileaflet and tilting disk valve behaviour in the pulmonanry position. J Biomech Eng 128(4):631–635PubMedCrossRefGoogle Scholar
  51. Guccione JM, Walker JC, Beitler JR, Moonly SM, Zhang P, Guttman MA, Ozturk C, McVeigh ER, Wallace AW, Saloner DA, Ratcliffe MB (2006) The effect of anteroapical aneurysm plication on end-systolic three-dimensional strain in the sheep: a magnetic resonance imaging tagging study. J Thorac Cardiovasc Surg 131(3):579–586PubMedCrossRefGoogle Scholar
  52. Hales S (1733) Statistical Essays: Containing Haemostatics, vol II. Innys and Manby, London, UKGoogle Scholar
  53. Hanson BM, Levesley MC, Watterson K, Walker PG (2007) Hardware-in-the-loop simulation of the cardiovascular system, with assist device testing application. Med Eng Phys 29(3):367–374PubMedCrossRefGoogle Scholar
  54. Hasenkam JM, Pedersen EM, Ostergaard JH, Nygaard H, Paulsen PK, Johannsen G, Schurizek BA (1988) Velocity fields and turbulent stresses downstream of biological and mechanical aortic valve prostheses implanted in pigs. Cardiovasc Res 22(7):472–483PubMedCrossRefGoogle Scholar
  55. Hopkins RA, Armstrong BE, Serwer GA, Peterson RJ, Oldham HN Jr (1985) Physiological rationale for a bidirectional cavopulmonary shunt A versatile complement to the Fontan principle. J Thorac Cardiovasc Surg 90(3):391–398PubMedGoogle Scholar
  56. Hsia TY, Migliavacca F, Pennati G, Balossino R, Dubini G, de Leval MR, Bradley SM, Bove EL (2009) Management of a stenotic right ventricle-pulmonary shunt early after the Norwood procedure. Ann Thorac Surg 88(3):830–837PubMedCrossRefGoogle Scholar
  57. Jahanmir S, Hunsberger AZ, Ren Z, Heshmat H, Heshmat C, Tomaszewski MJ, Walton JF (2009) Design of a small centrifugal blood pump with magnetic bearings. Artif Organs 33(9):714–726PubMedCrossRefGoogle Scholar
  58. Jimenez JH, Soerensen DD, He Z, Ritchie J, Yoganathan AP (2005) Mitral valve function and chordal force distribution using a flexible annulus model: an in vitro study. Ann Biomed Eng 33(5):557–566PubMedCrossRefGoogle Scholar
  59. Kaminsky R, Kallweit S, Weber HJ, Claessens T, Jozwik K, Verdonck P (2007) Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry. Artif Organs 31(12):869–879PubMedCrossRefGoogle Scholar
  60. Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V, Cooper J, Muthurangu V, Hedge SR, Razavi RS, Pellerin D, Deanfield J, Bonhoeffer P (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112(8):1189–1197PubMedCrossRefGoogle Scholar
  61. Kitajima HD, Sundareswaran KS, Teissevre TZ, Astary GW, Parks WJ, Skrinjar O, Oshinski JN, Yoganathan AP (2008) Comparison of particle image velocimetry and phase contrast MRI in patient-specific extracardiac total cavopulmonary connection. J Biomech Eng 130(4):041004PubMedCrossRefGoogle Scholar
  62. Kolyva C, Biglino G, Pepper JR, Khir AW (2010) A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump. Artif Organs doi:  10.1111/j.1525-1594.2010.01071.x. [Epub ahead of print]
  63. Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10(1):41–51PubMedCrossRefGoogle Scholar
  64. Krabill KA, Sung HW, Tamura T, Chung KJ, Yoganathan Ap, Sahn DJ (1989) Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mappaing and optical flow visualization. J Am Coll Cardiol 13(7):1672–1681PubMedCrossRefGoogle Scholar
  65. Kuehnel RU, Puchner R, Pohl A, Wendt MO, Hartrumpf M, Pohl M, Albes JM (2005) Characteristic resistance curves of aortic valve substitutes facilitate individualized decision for a particular type. Eur J Cardiothorac Surg 27(3):450–455PubMedCrossRefGoogle Scholar
  66. Kumar GP, Mathew L (2011) Stent biomaterial and design selection using finite element analysis for percutaneous aortic valve replacement. Artif Organs 35(2):166–175PubMedGoogle Scholar
  67. Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2(3):326–340PubMedGoogle Scholar
  68. Ladisa JF, Taylor CA, Feinstein JA (2010) Aortic coarctation: recent developments in experimental and computational methods to assess treatments for this simple condition. Prog Pediatr Cardiol 30(1):45–49PubMedCrossRefGoogle Scholar
  69. Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5):1129–1141PubMedCrossRefGoogle Scholar
  70. Laoui T, Shaik SK (2003) Rapid prototyping techniques used to produce medical models/implants. In: Proceedings of teh 4th international conference on rapid prototyping and virtual prototyping and applications. Centre for rapid design and manufacture, Buckinghamshire Chilterns University College, UK, pp 23–32 June 20Google Scholar
  71. Larsson HB, Stubgaard M, Søndergaard L, Henriksen O (1994) In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging 4(3):433–440PubMedCrossRefGoogle Scholar
  72. Larsson HB, Fritz-Hansen T, Rostrup E, Søndergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35(5):716–726PubMedCrossRefGoogle Scholar
  73. Lau KD, Diaz V, Scambler P, Burriesci G (2010) Mitral valve dynamics in structural and fluid-structure interaction models. Med Eng Phys 32(9):1057–1064PubMedCrossRefGoogle Scholar
  74. Leuprecht A, Kozerke S, Boesiger P, Perktold K (2003) Blood flow in the human ascending aorta: a combined MRI and CFD study. J Eng Math 47:387–404CrossRefGoogle Scholar
  75. Liang F, Takagi S, Himeno R, Liu H (2009) Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Comput 47(7):743–755PubMedCrossRefGoogle Scholar
  76. Lim HB, Hur G, Kim SY, Kim YH, Kwon SU, Lee WR, Cha SJ (2008) Coronary stent fracture: detection with 64-section multidetector CT angiography in patients and in vitro. Radiology 249(3):810–819PubMedCrossRefGoogle Scholar
  77. Lotz J, Döker R, Noeske R, Schüttert M, Felix R, Galanski M, Gutberlet M, Meyer GP (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 21(5):604–610PubMedCrossRefGoogle Scholar
  78. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671PubMedGoogle Scholar
  79. Lurz P, Coats L, Khambadkone S, Nordmeyer J, Boudjemline Y, Schievano S, Muthurangu V, Lee TY, Parenzan G, Derrick G, Cullen S, Walker F, Tsang V, Deanfield JE, Taylor AM, Bonhoeffer P (2008) Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation 117(15):1964–1972PubMedCrossRefGoogle Scholar
  80. Ma YL, Duckett S, Chinchapatnam P, Shetty A, Rinaldi CA, Schaeffter T, Rhode KS (2010) Image and physiological data fusion for guidance and modelling of cardiac resynchronization therapy procedure. In: STACOM’10/CESC’10 Proceedings of the first international conference on statistical atlases and computational models of the heart, and international conference on cardiac electrophysiological simulation challenge, Camara O, Pop M, Rhode K, Sermesant M, Smith N (eds), Springer Berlin, HeidelbergGoogle Scholar
  81. Mansi T, André B, Lynch M, Sermesant M, Delingettes H, Boudjemline Y, Ayache N (2009) Virtual pulmonary valve replacement interventions with a personalised cardiac electromechanical model. In: Recent advances in the 3D physiological human, Eds. Magnenat-Thalmann N, Zhang JJ, Feng DD. Springer, London, UKGoogle Scholar
  82. Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, Taylor CA, Feinstein JA (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137(2):394–403PubMedCrossRefGoogle Scholar
  83. Matthews PB, Jhun CS, Yaung S, Azadani AN, Guccione JM, Ge L, Tseng EE (2011) Finite element modelling of the pulmonary autograft at systemic pressure before remodelling. J Heart Valve Dis 20(1):45–52PubMedGoogle Scholar
  84. Matthys KS, Alastruey J, Peiró J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin SJ (2007) Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech 40(15):3476–3486PubMedCrossRefGoogle Scholar
  85. Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG (2007) Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J 53(2):122–131PubMedCrossRefGoogle Scholar
  86. Medvitz RB, Reddy V, Deutsch S, Manning KB, Paterson EG (2009) Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. J Biomech Eng 131(11):111009PubMedCrossRefGoogle Scholar
  87. Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1(4):197–203PubMedCrossRefGoogle Scholar
  88. Morrison T, Dreher M, Ibrahim N, Nagaraja S, Takai E, Wu C (2010) Computational modelling in device submissions: where we are and where we want to go. Workshop on computer methods for cardiovascular devices, Washington D.C., USA, June 10–11Google Scholar
  89. Nakatani T, Anai H, Araki K, Wakisaka Y, Taenaka Y, Tatsumi E, Akagi H, Masuzawa T, Baba Y, Eya K, Toda K, Takano H (1994) In vitro and in vivo assessment of an intravenous axial flow pump for right heart assist. ASAIO J 40(3):M723–M727PubMedCrossRefGoogle Scholar
  90. Napel S, Lee DH, Frayne R, Rutt BK (1992) Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging 2(2):143–153PubMedCrossRefGoogle Scholar
  91. National Research Council (1985) A new perspective. Committee on models for biomedical research. Board on basic biology. Commission on life sciences. National Academy Press, WashingtonGoogle Scholar
  92. Nordmeyer J, Khambadkone S, Coats L, Schievano S, Lurz P, Parenzan G, Taylor AM, Lock JE, Bonhoeffer P (2007) Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation 115(11):1392–1397PubMedCrossRefGoogle Scholar
  93. Norwood WI Jr (1991) Hypoplastic left heart syndrome. Ann Thorac Surg 52(3):688–695PubMedCrossRefGoogle Scholar
  94. O’Rourke MJ, McCullough JP (2010) An investigation of the flow field withing patient-specific models of an abdominal aortic aneurysm under steady inflow conditions. Proc Inst Mech Eng H 224(8):971–988PubMedCrossRefGoogle Scholar
  95. Odille F, Steeden JA, Muthurangu V, Atkinson D (2011) Automatic segmentation propagation of the aorta in real-time phase contrast MRI using nonrigid registration. J Magn Reson Imaging 33(1):232–238PubMedCrossRefGoogle Scholar
  96. Okano T, Yamagishi M, Shuntoh K, Yamada Y, Hayashida K, Shinkawa T, Kitamura N (2002) Extracardiac total cavopulmonary connection using a Y-shaped graft. Ann Thorac Surg 74(6):2195–2197PubMedCrossRefGoogle Scholar
  97. Pantalos GM, Ionan C, Koenig SC, Gillars KJ, Horrell T, Sahetya S, Colyer J, Gray LA Jr (2010) Expanded pediatric cardiovascular simulator for research and training. ASAIO J 56(1):67–72PubMedCrossRefGoogle Scholar
  98. Papaioannou TG, Mathioulakis DS, Stamatelopoulos KS, Gialafos EJ, Lekakis JP, Nanas J, Stamatelopoulos SF, Tsangaris SG (2004) New aspects of the role of blood pressure and arterial stiffness in mechanical assistance by intra-aortic balloon pump: in vitro data and their application in clinical practice. Artif Organs 28(8):717–727PubMedCrossRefGoogle Scholar
  99. Perktold K, Resch M, Peter RO (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 24(6):409–420PubMedCrossRefGoogle Scholar
  100. Prot V, Haaverstad R, Skallerud B (2009) Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech Model Mechanobiol 8(1):43–55PubMedCrossRefGoogle Scholar
  101. Qian Y, Liu JL, Itatani K, Miyaji K, Umezu M (2010) Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng 38(7):2302–2313PubMedCrossRefGoogle Scholar
  102. Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of PDE’s and ODE’s for blood flow simulations. Multiscale Model Simul: a SIAM Interdiscip J 1(2):173–195CrossRefGoogle Scholar
  103. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. 2nd edition. Springer, New York, USAGoogle Scholar
  104. Ransom R (1981) Computers and embryos: models in developmental biology. John Wiley and sons, New YorkGoogle Scholar
  105. Rits J, van Herwaarden JA, Jahrome AK, Krievins D, Moll FL (2008) The incidence of arterial stent fractures with exclusion of coronary, aortic, and non-arterial settings. Eur J Vasc Endovasc Surg 36(3):339–345PubMedCrossRefGoogle Scholar
  106. Rossi A, Rossi G, Piacenti M, Startari U, Panchetti L, Morales MA (2008) The current role of cardiac resynchronization therapy in reducing mortality and hospitalization in heart failure patients: a meta-analysis from clinical trials. Heart Vessels 23(4):217–223PubMedCrossRefGoogle Scholar
  107. Sadat U, Teng Z, Young VE, Graves MJ, Gaunt ME, Gillard JH (2011) High-resolution magnetic resonance imaging-based biomechanical stress analysis of carotid atheroma: a comparison of single transient ischaemic attack, recurrent transient ischaemic attacks, non-disabling stroke and asymptomatic patient groups. Eur J Vasc Endovasc Surg 41(1):83–90PubMedCrossRefGoogle Scholar
  108. Saleh RS, Lohan DG, Nael K, Grover-McKay M, Finn P (2007) Cardiovascular MRI at 3T. Appl Radiol 36(11):10–26Google Scholar
  109. Sano S, Ishino K, Kawada M, Arai S, Kasahara S, Asai T, Masuda Z, Takeuchi M, Ohtsuki S (2003) Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126(2):504–509PubMedCrossRefGoogle Scholar
  110. Satcher RL Jr, Bussolari SR, Gimbrone MA Jr, Dewey CF Jr (1992) The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J Biomech Eng 114(3):309–316PubMedCrossRefGoogle Scholar
  111. Scharfschwerdt M, Thomschke M, Sievers HH (2009) In vitro localization of initial flow-induced thrombus formation in bileaflet mechanical heart valves. ASAIO J 55(1):19–23PubMedCrossRefGoogle Scholar
  112. Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H (2009) MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng 37(3):503–515PubMedCrossRefGoogle Scholar
  113. Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, Deanfield JE, Bonhoeffer P, Taylor AM (2007a) Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242(2):490–497CrossRefGoogle Scholar
  114. Schievano S, Coats L, Migliavacca F, Norman W, Frigiola A, Deanfield J, Bonhoeffer P, Taylor AM (2007b) Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson 9(4):687–695CrossRefGoogle Scholar
  115. Schievano S, Petrini L, Migliavacca F, Coats L, Nordmeyer J, Lurz P, Khambadkone S, Taylor AM, Dubini G, Bonhoeffer P (2007c) Finite element analysis of stent deployment: understanding stent fracture in percutaneous pulmonary valve implantation. J Interv Cardiol 20(6):546–554CrossRefGoogle Scholar
  116. Schievano S, Taylor AM, Capelli C, Coats L, Walker F, Lurz P, Nordmeyer J, Wright S, Khambadkone S, Tsang V, Carminati M, Bonhoeffer P (2010a) First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention 5(6):745–750CrossRefGoogle Scholar
  117. Schievano S, Taylor AM, Capelli C, Lurz P, Nordmeyer J, Migliavacca F, Bonhoeffer P (2010b) Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J Biomech 43(4):687–693CrossRefGoogle Scholar
  118. Segers P, Dubois F, De Wachter D, Verdonck P (1998) Role and relevancy of a cardiovascular simulator. Cardiovasc Eng 3(1):48–56Google Scholar
  119. Selvarasu NK, Tafti DK, Vlachos PP (2011) Hydrodynamic effects of compliance mismatch in stented arteries. J Biomech Eng 133(2):021008PubMedCrossRefGoogle Scholar
  120. Shah MJ, Rychik J, Fogel MA, Murphy JD, Jacobs ML (1997) Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Ann Thorac Surg 63(4):960–963PubMedCrossRefGoogle Scholar
  121. Simon HA, Ge L, Sotiropoulos F, Yoganathan AP (2010) Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann Biomed Eng 38(11):3295–3310PubMedCrossRefGoogle Scholar
  122. Skalak R (1972) Synthesis of a complete circulation. In: Bergel D.H. Cardiovascular fluid dynamics, Vol 2. Academic Press, USA, pp 341–376Google Scholar
  123. Stevanella M, Votta E, Lemma M, Antona C, Redaelli A (2010) Finite element modelling of the tricuspid valve: a preliminary study. Med Eng Phys 32(10):1213–1223PubMedCrossRefGoogle Scholar
  124. Strik M, Ploux S, Vernooy K, Prinzen FW (2011) Cardiac resynchronization therapy. Circ J 75(6):1297–1304PubMedCrossRefGoogle Scholar
  125. Takami Y (2006) In vitro study to estimate particle release from a centrifugal blood pump. Artif Organs 30(5):371–376PubMedCrossRefGoogle Scholar
  126. Tang D, Yang C, Geva T, Del Nido PJ (2010) Image-based patient-specific ventricle models with fluid-structure interaction for cardiac function assessment and surgical design optimization. Prog Pediatr Cardiol 30(1–2):51–62PubMedCrossRefGoogle Scholar
  127. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK (1999) Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 4(5):231–247PubMedCrossRefGoogle Scholar
  128. Teng Z, Sadat U, Ji G, Zhu C, Young VE, Graves MJ, Gillard JH (2011) Lumen irregularity dominates the relationship between mechanical stress condition, fibrou-cap thickness, and lumen curvature in carotid atherosclerotic plaque. J Biomech Eng 133(3):034501PubMedCrossRefGoogle Scholar
  129. Timms DL, Gregory SD, Greatrex NA, Pearcy MJ, Fraser JF, Steinseifer U (2011) A compact mock circulation loop for the in vitro testing of cardiovascular devices. Artif Organs 35(4):384–391PubMedCrossRefGoogle Scholar
  130. van de Vosse FN, de Hart J, van Oijen CHGA, Bessems D, Gunther TWM, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT (2003) Finite-element-based computational methods for cardiovascular fluid-structure interaction. J Eng Math 47(3–4):335–368CrossRefGoogle Scholar
  131. Vermeulen M, Kaminsky R, Van Der Smissen B, Claessens T, Segers P, Verdonck P, Van Ransbeeck P (2009) In vitro flow modelling for mitral valve leakage quantification. 8th international symposium on particle image velocimetry. Merbourne, Victoria, Australia, August 25–28Google Scholar
  132. Vismara R, Laganà K, Migliavacca F, Schievano S, Coats L, Taylor A, Bonhoeffer P (2009) Experimental setup to evaluate the performance of percutaneous pulmonary valved stent in different outflow tract morphologies. Artif Organs 33(1):46–53PubMedCrossRefGoogle Scholar
  133. Weinberg EJ, Shahmirzadi D, Mofrad MR (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9(4):373–387PubMedCrossRefGoogle Scholar
  134. Wenk JF, Zhang Z, Cheng G, Malhotra D, Acevedo-Bolton G, Burger M, Suzuki T, Saloner DA, Wallace AW, Guccione JM, Ratcliffe MB (2010) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89(5):1546–1553PubMedCrossRefGoogle Scholar
  135. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47(2):131–141PubMedCrossRefGoogle Scholar
  136. Westwood JD (ed) (2007) Medicine meets virtual reality 15 – in vivo, in vitro, in silico: designing the next medicine. IOS press, Amsterdam, NetherlandsGoogle Scholar
  137. Woo YR, Yoganathan AP (1985) In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses. Life Support Syst 3(4):283–312PubMedGoogle Scholar
  138. Yang W, Feinstein JA, Marsden AL (2010) Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput Methods Appl Mech Eng 199(33–36):2135–2149CrossRefGoogle Scholar
  139. Zannoli R, Corazza I, Branzi A (2009) Mechanical simulator of the cardiovascular system. Phys Med 25(2):94–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giovanni Biglino
    • 1
  • Silvia Schievano
    • 1
  • Vivek Muthurangu
    • 1
  • Andrew Taylor
    • 1
  1. 1.Centre for Cardiovascular ImagingUCL Institute of Cardiovascular Science and Great Ormond Street Hospital for ChildrenLondonUK

Personalised recommendations