Skip to main content

Dose Optimization and Reduction in MDCT of the Abdomen

  • Chapter
Book cover Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2243 Accesses

Abstract

Computed Tomography (CT) is increasingly used in abdominal imaging with a subsequent increase in the collective radiation dose. This is of particular concern, especially in young patients and in those with chronic diseases who undergo repeated CT studies including treatable cancers. In this chapter, we will first expose the reference radiation levels of abdominal CT and define what can be considered as a low-dose or an optimized dose CT. Second, we will explain the strategies and the technological advances that have been developed to reduce the dose in abdominal CT in conditions characterized by intrinsic high contrast between structures such as ureteral stone, and later in conditions characterized by intrinsic low contrast between structures such as acute appendicitis or acute diverticulitis. Finally, we will provide recommendations for optimizing and reducing the radiation dose in abdominal CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALARA:

As low as reasonably achievable

ASIR:

Adaptative statistical iterative reconstruction

AEC:

Automatic exposure control

BMI:

Body mass index

CNR:

Contrast-to-noise ratio

CTA:

CT angiography

CTDI:

Computed tomography dose index

CTDIvol:

CTDI volume

CTDIw:

Weighted CTDI

DLP:

Dose length product

EU:

European union

FBP:

Filtered back projection

IRIS:

Iterative reconstruction in image space

IVU:

Intravenous urography

MDCT:

Multi-detector row CT

MPR:

MultiPlanar reconstructions

NI:

Noise index

NRPB:

National radiological protection board

PICCS:

Prior image constrained compressed sensing

ROI:

Region of interest

SD:

Standard deviation

SDCT:

Single-detector row CT

SNR:

Signal-to-noise ratio

References

  • Allen BC, Baker ME, Einstein DM, Remer EM, Herts BR, Achkar JP, Davros WJ, Novak E, Obuchowski NA (2010) Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. Am J Roentgenol 195:89–100

    Article  Google Scholar 

  • Amitai MM, razi-Kleinman T, Hertz M, Apter S, Portnoy O, Guranda L, Chowers Y, Avidan B (2008) Multislice CT compared to small bowel follow-through in the evaluation of patients with Crohn disease. Clin Imaging 32:355–361

    Article  PubMed  Google Scholar 

  • Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  PubMed  Google Scholar 

  • Birnbaum BA, Wilson SR (2000) Appendicitis at the millennium. Radiology 215:337–348

    PubMed  CAS  Google Scholar 

  • Brenner DJ (2008) Should computed tomography be the modality of choice for imaging Crohn’s disease in children? the radiation risk perspective. Gut 57:1489–1490

    Article  PubMed  Google Scholar 

  • Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, vom Dahl S, Aurich V, Haeussinger D, Moedder U (2004) Feasibility of MDCT colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. Am J Roentgenol 183:1355–1359

    Google Scholar 

  • Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  • Desmond AN, O’Regan K, Curran C, McWilliams S, Fitzgerald T, Maher MM, Shanahan F (2008) Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut 57:1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Diel J, Perlmutter S, Venkataramanan N, Mueller R, Lane MJ, Katz DS (2000) Unenhanced helical CT using increased pitch for suspected renal colic: an effective technique for radiation dose reduction? J Comput Assis Tomogr 24:795–801

    Article  CAS  Google Scholar 

  • European Commission (1999) European guidelines on quality criteria for computed tomography. EUR 16262 EN. Luxembourg, Office for Official Publications of the European Communities. http://www.drs.dk/guidelines/ct/quality/index.htm. Accessed 5 May 2011

  • Ferzoco LB, Raptopoulos V, Silen W (1998) Acute diverticulitis. N Engl J Med 338:1521–1526

    Article  PubMed  CAS  Google Scholar 

  • Fisichella VA, Bath M, Allansdotter JA, Jaderling F, Bergsten T, Persson U, Mellingen K, Hellstrom M (2010) Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose. Eur Radiol 20:630–639

    Article  PubMed  Google Scholar 

  • Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. Am J Roentgenol 195:126–131

    Article  Google Scholar 

  • Flum DR, Morris A, Koepsell T, Dellinger EP (2001) Has misdiagnosis of appendicitis decreased over time? a population-based analysis. JAMA 286:1748–1753

    Article  PubMed  CAS  Google Scholar 

  • Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, Shimonobo T, Liu D, Yamashita Y, Hori S (2006) Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 41:1–7

    Article  PubMed  Google Scholar 

  • Furukawa A, Saotome T, Yamasaki M, Maeda K, Nitta N, Takahashi M, Tsujikawa T, Fujiyama Y, Murata K, Sakamoto T (2004) Cross-sectional imaging in Crohn disease. Radiographics 24:689–702

    Article  PubMed  Google Scholar 

  • Golding SJ (2010) Radiation exposure in CT: what is the professionally responsible approach? Radiology 255:683–686

    Article  PubMed  Google Scholar 

  • Graser A, Wintersperger BJ, Suess C, Reiser MF, Becker CR (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. Am J Roentgenol 187:695–701

    Article  CAS  Google Scholar 

  • Guimaraes LS, Fletcher JG, Harmsen WS, Yu L, Siddiki H, Melton Z, Huprich JE, Hough D, Hartman R, McCollough CH (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742

    Article  PubMed  Google Scholar 

  • Hamm M, Wawroschek F, Weckermann D, Knopfle E, Hackel T, Hauser H, Krawczak G, Harzmann R (2001) Unenhanced helical computed tomography in the evaluation of acute flank pain. Eur Urol 39:460–465

    Article  PubMed  CAS  Google Scholar 

  • Hamm M, Knopfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R (2002) Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687–1691

    Article  PubMed  Google Scholar 

  • Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771

    Article  Google Scholar 

  • Heneghan JP, McGuire KA, Leder RA, DeLong DM, Yoshizumi T, Nelson RC (2003) Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology 229:575–580

    Article  PubMed  Google Scholar 

  • Iannaccone R, Laghi A, Catalano C, Brink JA, Mangiapane F, Trenna S, Piacentini F, Passariello R (2003) Detection of colorectal lesions: lower-dose multi-detector row helical CT colonography compared with conventional colonoscopy. Radiology 229:775–781

    Article  PubMed  Google Scholar 

  • Jaffe TA, Gaca AM, Delaney S, Yoshizumi TT, Toncheva G, Nguyen G, Frush DP (2007) Radiation doses from small-bowel follow-through and abdominopelvic MDCT in Crohn’s disease. Am J Roentgenol 189:1015–1022

    Article  Google Scholar 

  • Johnson PT, Horton KM, Mahesh M, Fishman EK (2006) Multidetector computed tomography for suspected appendicitis: multi-institutional survey of 16-MDCT data acquisition protocols and review of pertinent literature. J Comput Assist Tomogr 30:758–764

    Article  PubMed  Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S (2004a) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  Google Scholar 

  • Kalra MK, Maher MM, Blake MA, Lucey BC, Karau K, Toth TL, Avinash G, Halpern EF, Saini S (2004b) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797

    Article  Google Scholar 

  • Kalra MK, Maher MM, D’Souza RV, Rizzo S, Halpern EF, Blake MA, Saini S (2005) Detection of urinary tract stones at low-radiation-dose CT with z-axis automatic tube current modulation: phantom and clinical studies. Radiology 235:523–529

    Article  PubMed  Google Scholar 

  • Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  • Kambadakone AR, Prakash P, Hahn PF, Sahani DV (2010) Low-dose CT examinations in Crohn’s disease: impact on image quality, diagnostic performance, and radiation dose. Am J Roentgenol 195:78–88

    Article  Google Scholar 

  • Kamel IR, Goldberg SN, Keogan MT, Rosen MP, Raptopoulos V (2000) Right lower quadrant pain and suspected appendicitis: nonfocused appendiceal CT—review of 100 cases. Radiology 217:159–163

    PubMed  CAS  Google Scholar 

  • Katz DS, Scheer M, Lumerman JH, Mellinger BC, Stillman CA, Lane MJ (2000) Alternative or additional diagnoses on unenhanced helical computed tomography for suspected renal colic: experience with 1000 consecutive examinations. Urology 56:53–57

    Article  PubMed  CAS  Google Scholar 

  • Keyzer C, Tack D, De Maertelaer V, Bohy P, Gevenois PA, Van Gansbeke D (2004) Acute appendicitis: comparison of low-dose and standard-dose unenhanced multi-detector row CT. Radiology 232:164–172

    Article  PubMed  Google Scholar 

  • Keyzer C, Cullus P, Tack D, De Maertelaer V, Bohy P, Gevenois PA (2009) MDCT for suspected acute appendicitis in adults: impact of oral and IV contrast media at standard-dose and simulated low-dose techniques. Am J Roentgenol 193:1272–1281

    Article  Google Scholar 

  • Kim SY, Lee KH, Kim K, Kim TY, Lee HS, Hwang SS, Song KJ, Kang HS, Kim YH, Rhee JE (2011) Acute appendicitis in young adults: low- versus standard-radiation-dose contrast-enhanced abdominal CT for diagnosis. Radiology 260:437–445

    Article  PubMed  Google Scholar 

  • Kircher MF, Rhea JT, Kihiczak D, Novelline RA (2002) Frequency, sensitivity, and specificity of individual signs of diverticulitis on thin-section helical CT with colonic contrast material: experience with 312 cases. Am J Roentgenol 178:1313–1318

    Google Scholar 

  • Kluner C, Hein PA, Gralla O, Hein E, Hamm B, Romano V, Rogalla P (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50

    Article  PubMed  Google Scholar 

  • Krieg AF, Gambino R, Galen RS (1975) Why are clinical laboratory tests performed? when are they valid? JAMA 233:76–78

    Article  PubMed  CAS  Google Scholar 

  • la Fougère C, Pfluger T, Schneider V, Hacker M, Brockel N, Morhard D, Hundt W, Bartenstein P, Becker C, Tiling R (2008) Restaging of patients with lymphoma. Comparison of low dose CT (20 mAs) with contrast enhanced diagnostic CT in combined [18F]-FDG PET/CT. Nuklearmedizin 47:37–42

    PubMed  Google Scholar 

  • Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12

    Article  PubMed  Google Scholar 

  • Liu W, Esler SJ, Kenny BJ, Goh RH, Rainbow AJ, Stevenson GW (2000) Low-dose nonenhanced helical CT of renal colic: assessment of ureteric stone detection and measurement of effective dose equivalent. Radiology 215:51–54

    PubMed  CAS  Google Scholar 

  • Loftus EV Jr, Schoenfeld P, Sandborn WJ (2002) The epidemiology and natural history of Crohn’s disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther 16:51–60

    Article  PubMed  Google Scholar 

  • Lubner MG, Pickhardt PJ, Tang J, Chen GH (2011) Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology 260:248–256

    Article  PubMed  Google Scholar 

  • Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, DeLong DM, Yoshizumi TT, Schindera ST (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection—initial clinical experience. Radiology 251:771–779

    Article  PubMed  Google Scholar 

  • Marin D, Nelson RC, Barnhart H, Schindera ST, Ho LM, Jaffe TA, Yoshizumi TT, Youngblood R, Samei E (2010a) Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique—preliminary results. Radiology 256:450–459

    Article  Google Scholar 

  • Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, Samei E (2010b) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153

    Article  Google Scholar 

  • Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  • Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, van Dijck X, Mussen E, Venstermans C, Termote JL (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223

    Article  PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y, Liu D, Nakaura T, Tamura Y, Yamashita Y (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. Am J Roentgenol 187:W490–W497

    Article  Google Scholar 

  • O’Malley ME, Halpern E, Mueller PR, Gazelle GS (2000) Helical CT protocols for the abdomen and pelvis: a survey. Am J Roentgenol 175:109–113

    Google Scholar 

  • O’Malley ME, Chung P, Haider M, Jang HJ, Jhaveri K, Khalili K, Panzarella T, Warde P (2010) Comparison of low dose with standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer under surveillance. Eur Radiol 20:1624–1630

    Article  PubMed  Google Scholar 

  • Platon A, Jlassi H, Rutschmann OT, Becker CD, Verdun FR, Gervaz P, Poletti PA (2009) Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis. Eur Radiol 19:446–454

    Article  PubMed  Google Scholar 

  • Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J, Blake MA, Sahani DV (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45:202–210

    Article  PubMed  Google Scholar 

  • Rodriguez-Vigil B, Gomez-Leon N, Pinilla I, Hernandez-Maraver D, Coya J, Martin-Curto L, Madero R (2006) PET/CT in lymphoma: prospective study of enhanced full-dose PET/CT versus unenhanced low-dose PET/CT. J Nucl Med 47:1643–1648

    PubMed  Google Scholar 

  • Rogers LF (2001) Radiation exposure in CT: why so high? Am J Roentgenol 177:277

    CAS  Google Scholar 

  • Rogers LF (2003) Low-dose CT: how are we doing? Am J Roentgenol 180:303

    Google Scholar 

  • Sahani DV, Kalva SP, Hahn PF, Saini S (2007) 16-MDCT angiography in living kidney donors at various tube potentials: impact on image quality and radiation dose. Am J Roentgenol 188:115–120

    Article  Google Scholar 

  • Schindera ST, Nelson RC, Mukundan S Jr, Paulson EK, Jaffe TA, Miller CM, DeLong DM, Kawaji K, Yoshizumi TT, Samei E (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection—phantom study. Radiology 246:125–132

    Article  PubMed  Google Scholar 

  • Schindera ST, Nelson RC, Yoshizumi T, Toncheva G, Nguyen G, DeLong DM, Szucs-Farkas Z (2009a) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002

    Article  Google Scholar 

  • Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, Szucs-Farkas Z (2009b) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655

    Article  Google Scholar 

  • Schindera ST, Diedrichsen L, Muller HC, Rusch O, Marin D, Schmidt B, Raupach R, Vock P, Szucs-Farkas Z (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260:454–462

    Article  PubMed  Google Scholar 

  • Seo H, Lee KH, Kim HJ, Kim K, Kang SB, Kim SY, Kim YH (2009) Diagnosis of acute appendicitis with sliding slab ray-sum interpretation of low-dose unenhanced CT and standard-dose i.v. contrast-enhanced CT scans. Am J Roentgenol 193:96–105

    Article  Google Scholar 

  • Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2005) Doses from computed tomography (CT) examinations in the UK—2003 review. Chilton, NRPB-W67. http://www.hpa.org.uk/Publications/Radiation/NPRBArchive/NRPBWSeriesReports/2005nrpbw067/. Accessed June 2011

  • Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, Blake MA (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383

    Article  PubMed  Google Scholar 

  • Smith RC, Rosenfield AT, Choe KA, Essenmacher KR, Verga M, Glickman MG, Lange RC (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794

    PubMed  CAS  Google Scholar 

  • Sourtzis S, Thibeau JF, Damry N, Raslan A, Vandendris M, Bellemans M (1999) Radiologic investigation of renal colic: unenhanced helical CT compared with excretory urography. Am J Roentgenol 172:1491–1494

    CAS  Google Scholar 

  • Tack D, Gevenois PA (2009) Body MDCT at 140 kV. Am J Roentgenol 192:W139–W140

    Article  Google Scholar 

  • Tack D, Sourtzis S, Delpierre I, De Maertelaer V, Gevenois PA (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. Am J Roentgenol 180:305–311

    Google Scholar 

  • Tack D, Bohy P, Perlot I, De Maertelaer V, Alkeilani O, Sourtzis S, Gevenois PA (2005) Suspected acute colon diverticulitis: imaging with low-dose unenhanced multi-detector row CT. Radiology 237:189–196

    Article  PubMed  Google Scholar 

  • van Gelder RE, Venema HW, Serlie IW, Nio CY, Determann RM, Tipker CA, Vos FM, Glas AS, Bartelsman JF, Bossuyt PM, Lameris JS, Stoker J (2002) CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology 224:25–33

    Article  PubMed  Google Scholar 

  • van Gelder RE, Venema HW, Florie J, Nio CY, Serlie IW, Schutter MP, van Rijn JC, Vos FM, Glas AS, Bossuyt PM, Bartelsman JF, Lameris JS, Stoker J (2004) CT colonography: feasibility of substantial dose reduction—comparison of medium to very low doses in identical patients. Radiology 232:611–620

    Article  PubMed  Google Scholar 

  • Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

  • Wise SW, Labuski MR, Kasales CJ, Blebea JS, Meilstrup JW, Holley GP, LaRusso SA, Holliman J, Ruggiero FM, Mauger D (2001) Comparative assessment of CT and sonographic techniques for appendiceal imaging. Am J Roentgenol 176:933–941

    CAS  Google Scholar 

  • Yamamura J, Tornquist K, Buchert R, Wildberger J, Nagel HD, Dichtl D, Adam G, Wedegartner U (2010) Simulated low-dose computed tomography in oncological patients: a feasibility study. J Comput Assist Tomogr 34:302–308

    Article  PubMed  Google Scholar 

  • Yanaga Y, Awai K, Funama Y, Nakaura T, Hirai T, Roux S, Yamashita Y (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. Am J Roentgenol 193:W220–W229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Keyzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keyzer, C., Tack, D. (2011). Dose Optimization and Reduction in MDCT of the Abdomen. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_420

Download citation

  • DOI: https://doi.org/10.1007/174_2011_420

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics