Dose Optimization and Reduction in MDCT of the Abdomen

  • Caroline Keyzer
  • Denis Tack
Part of the Medical Radiology book series (MEDRAD)


Computed Tomography (CT) is increasingly used in abdominal imaging with a subsequent increase in the collective radiation dose. This is of particular concern, especially in young patients and in those with chronic diseases who undergo repeated CT studies including treatable cancers. In this chapter, we will first expose the reference radiation levels of abdominal CT and define what can be considered as a low-dose or an optimized dose CT. Second, we will explain the strategies and the technological advances that have been developed to reduce the dose in abdominal CT in conditions characterized by intrinsic high contrast between structures such as ureteral stone, and later in conditions characterized by intrinsic low contrast between structures such as acute appendicitis or acute diverticulitis. Finally, we will provide recommendations for optimizing and reducing the radiation dose in abdominal CT.


Acute Appendicitis Filter Back Projection Ureteral Stone Acute Diverticulitis Adaptative Statistical Iterative Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



As low as reasonably achievable


Adaptative statistical iterative reconstruction


Automatic exposure control


Body mass index


Contrast-to-noise ratio


CT angiography


Computed tomography dose index


CTDI volume


Weighted CTDI


Dose length product


European union


Filtered back projection


Iterative reconstruction in image space


Intravenous urography


Multi-detector row CT


MultiPlanar reconstructions


Noise index


National radiological protection board


Prior image constrained compressed sensing


Region of interest


Standard deviation


Single-detector row CT


Signal-to-noise ratio


  1. Allen BC, Baker ME, Einstein DM, Remer EM, Herts BR, Achkar JP, Davros WJ, Novak E, Obuchowski NA (2010) Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. Am J Roentgenol 195:89–100CrossRefGoogle Scholar
  2. Amitai MM, razi-Kleinman T, Hertz M, Apter S, Portnoy O, Guranda L, Chowers Y, Avidan B (2008) Multislice CT compared to small bowel follow-through in the evaluation of patients with Crohn disease. Clin Imaging 32:355–361PubMedCrossRefGoogle Scholar
  3. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRefGoogle Scholar
  4. Birnbaum BA, Wilson SR (2000) Appendicitis at the millennium. Radiology 215:337–348PubMedGoogle Scholar
  5. Brenner DJ (2008) Should computed tomography be the modality of choice for imaging Crohn’s disease in children? the radiation risk perspective. Gut 57:1489–1490PubMedCrossRefGoogle Scholar
  6. Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, vom Dahl S, Aurich V, Haeussinger D, Moedder U (2004) Feasibility of MDCT colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. Am J Roentgenol 183:1355–1359Google Scholar
  7. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRefGoogle Scholar
  8. Desmond AN, O’Regan K, Curran C, McWilliams S, Fitzgerald T, Maher MM, Shanahan F (2008) Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut 57:1524–1529PubMedCrossRefGoogle Scholar
  9. Diel J, Perlmutter S, Venkataramanan N, Mueller R, Lane MJ, Katz DS (2000) Unenhanced helical CT using increased pitch for suspected renal colic: an effective technique for radiation dose reduction? J Comput Assis Tomogr 24:795–801CrossRefGoogle Scholar
  10. European Commission (1999) European guidelines on quality criteria for computed tomography. EUR 16262 EN. Luxembourg, Office for Official Publications of the European Communities. Accessed 5 May 2011
  11. Ferzoco LB, Raptopoulos V, Silen W (1998) Acute diverticulitis. N Engl J Med 338:1521–1526PubMedCrossRefGoogle Scholar
  12. Fisichella VA, Bath M, Allansdotter JA, Jaderling F, Bergsten T, Persson U, Mellingen K, Hellstrom M (2010) Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose. Eur Radiol 20:630–639PubMedCrossRefGoogle Scholar
  13. Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. Am J Roentgenol 195:126–131CrossRefGoogle Scholar
  14. Flum DR, Morris A, Koepsell T, Dellinger EP (2001) Has misdiagnosis of appendicitis decreased over time? a population-based analysis. JAMA 286:1748–1753PubMedCrossRefGoogle Scholar
  15. Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, Shimonobo T, Liu D, Yamashita Y, Hori S (2006) Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 41:1–7PubMedCrossRefGoogle Scholar
  16. Furukawa A, Saotome T, Yamasaki M, Maeda K, Nitta N, Takahashi M, Tsujikawa T, Fujiyama Y, Murata K, Sakamoto T (2004) Cross-sectional imaging in Crohn disease. Radiographics 24:689–702PubMedCrossRefGoogle Scholar
  17. Golding SJ (2010) Radiation exposure in CT: what is the professionally responsible approach? Radiology 255:683–686PubMedCrossRefGoogle Scholar
  18. Graser A, Wintersperger BJ, Suess C, Reiser MF, Becker CR (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. Am J Roentgenol 187:695–701CrossRefGoogle Scholar
  19. Guimaraes LS, Fletcher JG, Harmsen WS, Yu L, Siddiki H, Melton Z, Huprich JE, Hough D, Hartman R, McCollough CH (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742PubMedCrossRefGoogle Scholar
  20. Hamm M, Wawroschek F, Weckermann D, Knopfle E, Hackel T, Hauser H, Krawczak G, Harzmann R (2001) Unenhanced helical computed tomography in the evaluation of acute flank pain. Eur Urol 39:460–465PubMedCrossRefGoogle Scholar
  21. Hamm M, Knopfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R (2002) Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687–1691PubMedCrossRefGoogle Scholar
  22. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771CrossRefGoogle Scholar
  23. Heneghan JP, McGuire KA, Leder RA, DeLong DM, Yoshizumi T, Nelson RC (2003) Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology 229:575–580PubMedCrossRefGoogle Scholar
  24. Iannaccone R, Laghi A, Catalano C, Brink JA, Mangiapane F, Trenna S, Piacentini F, Passariello R (2003) Detection of colorectal lesions: lower-dose multi-detector row helical CT colonography compared with conventional colonoscopy. Radiology 229:775–781PubMedCrossRefGoogle Scholar
  25. Jaffe TA, Gaca AM, Delaney S, Yoshizumi TT, Toncheva G, Nguyen G, Frush DP (2007) Radiation doses from small-bowel follow-through and abdominopelvic MDCT in Crohn’s disease. Am J Roentgenol 189:1015–1022CrossRefGoogle Scholar
  26. Johnson PT, Horton KM, Mahesh M, Fishman EK (2006) Multidetector computed tomography for suspected appendicitis: multi-institutional survey of 16-MDCT data acquisition protocols and review of pertinent literature. J Comput Assist Tomogr 30:758–764PubMedCrossRefGoogle Scholar
  27. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S (2004a) Strategies for CT radiation dose optimization. Radiology 230:619–628CrossRefGoogle Scholar
  28. Kalra MK, Maher MM, Blake MA, Lucey BC, Karau K, Toth TL, Avinash G, Halpern EF, Saini S (2004b) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797CrossRefGoogle Scholar
  29. Kalra MK, Maher MM, D’Souza RV, Rizzo S, Halpern EF, Blake MA, Saini S (2005) Detection of urinary tract stones at low-radiation-dose CT with z-axis automatic tube current modulation: phantom and clinical studies. Radiology 235:523–529PubMedCrossRefGoogle Scholar
  30. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397PubMedCrossRefGoogle Scholar
  31. Kambadakone AR, Prakash P, Hahn PF, Sahani DV (2010) Low-dose CT examinations in Crohn’s disease: impact on image quality, diagnostic performance, and radiation dose. Am J Roentgenol 195:78–88CrossRefGoogle Scholar
  32. Kamel IR, Goldberg SN, Keogan MT, Rosen MP, Raptopoulos V (2000) Right lower quadrant pain and suspected appendicitis: nonfocused appendiceal CT—review of 100 cases. Radiology 217:159–163PubMedGoogle Scholar
  33. Katz DS, Scheer M, Lumerman JH, Mellinger BC, Stillman CA, Lane MJ (2000) Alternative or additional diagnoses on unenhanced helical computed tomography for suspected renal colic: experience with 1000 consecutive examinations. Urology 56:53–57PubMedCrossRefGoogle Scholar
  34. Keyzer C, Tack D, De Maertelaer V, Bohy P, Gevenois PA, Van Gansbeke D (2004) Acute appendicitis: comparison of low-dose and standard-dose unenhanced multi-detector row CT. Radiology 232:164–172PubMedCrossRefGoogle Scholar
  35. Keyzer C, Cullus P, Tack D, De Maertelaer V, Bohy P, Gevenois PA (2009) MDCT for suspected acute appendicitis in adults: impact of oral and IV contrast media at standard-dose and simulated low-dose techniques. Am J Roentgenol 193:1272–1281CrossRefGoogle Scholar
  36. Kim SY, Lee KH, Kim K, Kim TY, Lee HS, Hwang SS, Song KJ, Kang HS, Kim YH, Rhee JE (2011) Acute appendicitis in young adults: low- versus standard-radiation-dose contrast-enhanced abdominal CT for diagnosis. Radiology 260:437–445PubMedCrossRefGoogle Scholar
  37. Kircher MF, Rhea JT, Kihiczak D, Novelline RA (2002) Frequency, sensitivity, and specificity of individual signs of diverticulitis on thin-section helical CT with colonic contrast material: experience with 312 cases. Am J Roentgenol 178:1313–1318Google Scholar
  38. Kluner C, Hein PA, Gralla O, Hein E, Hamm B, Romano V, Rogalla P (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50PubMedCrossRefGoogle Scholar
  39. Krieg AF, Gambino R, Galen RS (1975) Why are clinical laboratory tests performed? when are they valid? JAMA 233:76–78PubMedCrossRefGoogle Scholar
  40. la Fougère C, Pfluger T, Schneider V, Hacker M, Brockel N, Morhard D, Hundt W, Bartenstein P, Becker C, Tiling R (2008) Restaging of patients with lymphoma. Comparison of low dose CT (20 mAs) with contrast enhanced diagnostic CT in combined [18F]-FDG PET/CT. Nuklearmedizin 47:37–42PubMedGoogle Scholar
  41. Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12PubMedCrossRefGoogle Scholar
  42. Liu W, Esler SJ, Kenny BJ, Goh RH, Rainbow AJ, Stevenson GW (2000) Low-dose nonenhanced helical CT of renal colic: assessment of ureteric stone detection and measurement of effective dose equivalent. Radiology 215:51–54PubMedGoogle Scholar
  43. Loftus EV Jr, Schoenfeld P, Sandborn WJ (2002) The epidemiology and natural history of Crohn’s disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther 16:51–60PubMedCrossRefGoogle Scholar
  44. Lubner MG, Pickhardt PJ, Tang J, Chen GH (2011) Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology 260:248–256PubMedCrossRefGoogle Scholar
  45. Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, DeLong DM, Yoshizumi TT, Schindera ST (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection—initial clinical experience. Radiology 251:771–779PubMedCrossRefGoogle Scholar
  46. Marin D, Nelson RC, Barnhart H, Schindera ST, Ho LM, Jaffe TA, Yoshizumi TT, Youngblood R, Samei E (2010a) Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique—preliminary results. Radiology 256:450–459CrossRefGoogle Scholar
  47. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, Samei E (2010b) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153CrossRefGoogle Scholar
  48. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263PubMedCrossRefGoogle Scholar
  49. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, van Dijck X, Mussen E, Venstermans C, Termote JL (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223PubMedCrossRefGoogle Scholar
  50. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  51. Nakayama Y, Awai K, Funama Y, Liu D, Nakaura T, Tamura Y, Yamashita Y (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. Am J Roentgenol 187:W490–W497CrossRefGoogle Scholar
  52. O’Malley ME, Halpern E, Mueller PR, Gazelle GS (2000) Helical CT protocols for the abdomen and pelvis: a survey. Am J Roentgenol 175:109–113Google Scholar
  53. O’Malley ME, Chung P, Haider M, Jang HJ, Jhaveri K, Khalili K, Panzarella T, Warde P (2010) Comparison of low dose with standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer under surveillance. Eur Radiol 20:1624–1630PubMedCrossRefGoogle Scholar
  54. Platon A, Jlassi H, Rutschmann OT, Becker CD, Verdun FR, Gervaz P, Poletti PA (2009) Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis. Eur Radiol 19:446–454PubMedCrossRefGoogle Scholar
  55. Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J, Blake MA, Sahani DV (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45:202–210PubMedCrossRefGoogle Scholar
  56. Rodriguez-Vigil B, Gomez-Leon N, Pinilla I, Hernandez-Maraver D, Coya J, Martin-Curto L, Madero R (2006) PET/CT in lymphoma: prospective study of enhanced full-dose PET/CT versus unenhanced low-dose PET/CT. J Nucl Med 47:1643–1648PubMedGoogle Scholar
  57. Rogers LF (2001) Radiation exposure in CT: why so high? Am J Roentgenol 177:277Google Scholar
  58. Rogers LF (2003) Low-dose CT: how are we doing? Am J Roentgenol 180:303Google Scholar
  59. Sahani DV, Kalva SP, Hahn PF, Saini S (2007) 16-MDCT angiography in living kidney donors at various tube potentials: impact on image quality and radiation dose. Am J Roentgenol 188:115–120CrossRefGoogle Scholar
  60. Schindera ST, Nelson RC, Mukundan S Jr, Paulson EK, Jaffe TA, Miller CM, DeLong DM, Kawaji K, Yoshizumi TT, Samei E (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection—phantom study. Radiology 246:125–132PubMedCrossRefGoogle Scholar
  61. Schindera ST, Nelson RC, Yoshizumi T, Toncheva G, Nguyen G, DeLong DM, Szucs-Farkas Z (2009a) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002CrossRefGoogle Scholar
  62. Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, Szucs-Farkas Z (2009b) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655CrossRefGoogle Scholar
  63. Schindera ST, Diedrichsen L, Muller HC, Rusch O, Marin D, Schmidt B, Raupach R, Vock P, Szucs-Farkas Z (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260:454–462PubMedCrossRefGoogle Scholar
  64. Seo H, Lee KH, Kim HJ, Kim K, Kang SB, Kim SY, Kim YH (2009) Diagnosis of acute appendicitis with sliding slab ray-sum interpretation of low-dose unenhanced CT and standard-dose i.v. contrast-enhanced CT scans. Am J Roentgenol 193:96–105CrossRefGoogle Scholar
  65. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2005) Doses from computed tomography (CT) examinations in the UK—2003 review. Chilton, NRPB-W67. Accessed June 2011
  66. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980PubMedCrossRefGoogle Scholar
  67. Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, Blake MA (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383PubMedCrossRefGoogle Scholar
  68. Smith RC, Rosenfield AT, Choe KA, Essenmacher KR, Verga M, Glickman MG, Lange RC (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794PubMedGoogle Scholar
  69. Sourtzis S, Thibeau JF, Damry N, Raslan A, Vandendris M, Bellemans M (1999) Radiologic investigation of renal colic: unenhanced helical CT compared with excretory urography. Am J Roentgenol 172:1491–1494Google Scholar
  70. Tack D, Gevenois PA (2009) Body MDCT at 140 kV. Am J Roentgenol 192:W139–W140CrossRefGoogle Scholar
  71. Tack D, Sourtzis S, Delpierre I, De Maertelaer V, Gevenois PA (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. Am J Roentgenol 180:305–311Google Scholar
  72. Tack D, Bohy P, Perlot I, De Maertelaer V, Alkeilani O, Sourtzis S, Gevenois PA (2005) Suspected acute colon diverticulitis: imaging with low-dose unenhanced multi-detector row CT. Radiology 237:189–196PubMedCrossRefGoogle Scholar
  73. van Gelder RE, Venema HW, Serlie IW, Nio CY, Determann RM, Tipker CA, Vos FM, Glas AS, Bartelsman JF, Bossuyt PM, Lameris JS, Stoker J (2002) CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology 224:25–33PubMedCrossRefGoogle Scholar
  74. van Gelder RE, Venema HW, Florie J, Nio CY, Serlie IW, Schutter MP, van Rijn JC, Vos FM, Glas AS, Bossuyt PM, Bartelsman JF, Lameris JS, Stoker J (2004) CT colonography: feasibility of substantial dose reduction—comparison of medium to very low doses in identical patients. Radiology 232:611–620PubMedCrossRefGoogle Scholar
  75. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRefGoogle Scholar
  76. Wise SW, Labuski MR, Kasales CJ, Blebea JS, Meilstrup JW, Holley GP, LaRusso SA, Holliman J, Ruggiero FM, Mauger D (2001) Comparative assessment of CT and sonographic techniques for appendiceal imaging. Am J Roentgenol 176:933–941Google Scholar
  77. Yamamura J, Tornquist K, Buchert R, Wildberger J, Nagel HD, Dichtl D, Adam G, Wedegartner U (2010) Simulated low-dose computed tomography in oncological patients: a feasibility study. J Comput Assist Tomogr 34:302–308PubMedCrossRefGoogle Scholar
  78. Yanaga Y, Awai K, Funama Y, Nakaura T, Hirai T, Roux S, Yamashita Y (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. Am J Roentgenol 193:W220–W229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of RadiologyHôpital Erasme, Université libre de BruxellesBrusselsBelgium
  2. 2.Department of Radiology, Clinique Louis CatyHôpital RHMSBaudourBelgium

Personalised recommendations