Skip to main content

Dose Reduction and Optimization in Computed Tomography of the Chest

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2349 Accesses

Abstract

Even if the clinical benefit of multi-detector computed tomography (MDCT) of the chest is expected to be much higher than the potential risks from radiation, reduction and optimization of the radiation dose are highly recommended in accordance with the ALARA principle. As the chest is composed by organs and structures that are characterized by high differences in attenuation values with spontaneously high contrasts, it is well established that MDCT dose can be dramatically reduced. It has been indeed documented that in numerous clinical circumstances, radiation dose cannot be higher than 10 to 20% of the standard doses recommended by the scanner vendors (i.e. CTDIvol from 0.6 to 3 mGy, DLP from 30 to 120 mGy cm, E from 0.6 to 2.5 mSv as compared to 8–14 mSv). This is of particular concern in patients with long life expectancy and can be achieved by automatic exposure control in adjunction to either reduced tube current time product, reduced tube potential, or both. Newly developed dose reduction strategies, in particular iterative reconstructions will enable to obtain CT scans of high quality with a dose close of that delivered for plain film examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae KT, Slone RM, Gierada DS, Yusen RD, Cooper JD (1997) Patients with emphysema: quantitative CT analysis before and after lung volume reduction surgery. Radiology 203:705–714

    PubMed  CAS  Google Scholar 

  • Bankier AA, Van Muylem A, Scillia P, De Maertelaer V, Estenne M, Gevenois PA (2003) Air trapping in heart–lung transplant recipients: variability of anatomic distribution and extent at sequential expiratory thin-section CT. Radiology 229:737–742

    Article  PubMed  Google Scholar 

  • Bankier AA, Schaefer-Prokop C, De Maertelaer V, Tack D, Jaksch P, Klepetko W, Gevenois PA (2007) Air trapping on thin-section CT examinations: comparison of standard-dose and simulated low-dose techniques. Radiology 242:898–906

    Article  PubMed  Google Scholar 

  • Bendaoud S, Remy-Jardin M, Wallaert B et al (2011) Sequential versus volumetric computed tomography in the follow-up of chronic bronchopulmonary diseases: comparison of diagnostic information and radiation dose in 63 adults. J Thorac Imaging 26:190–195

    Article  PubMed  Google Scholar 

  • Dinkel HP, Sonnenschein M, Hoppe H, Vock P (2003) Low-dose multislice CT of the thorax in follow-up of malignant lymphoma and extrapulmonary primary tumors. Eur Radiol 13:1241–1249

    PubMed  Google Scholar 

  • Dirksen A, Dijkman JH, Madsen F et al (1999) A randomized clinical trial of α1-antitrypsin augmented therapy. Am J Respir Crit Care Med 160:1468–1472

    PubMed  CAS  Google Scholar 

  • Eur (1999) European guidelines on quality criteria for computed tomography—EUR 16262 EN access on line at http://www.drs.dk/guidelines/ct/quality/htmlindex.htm

  • Gierada DS, Yusen RD, Pilgram TK et al (2001) Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery. Radiology 220:448–454

    PubMed  CAS  Google Scholar 

  • Golding SJ, Shrimpton PC (2002) Radiation dose in CT: are we meeting the challenge? (commentary). Br J Radiol 75:1–4

    PubMed  CAS  Google Scholar 

  • Henschke CI, McCauley DI, Yankelevitz DF et al (1999) Early lung cancer action project: overall design and findings from baseline screening. Lancet 354:99–105

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Ikeda M, Arahata S et al (2000) Lung cancer screening: minimum tube current required for helical CT. Radiology 215:175–183

    PubMed  CAS  Google Scholar 

  • Lee KS, Primack SL, Staples CA, Mayo JR, Aldrich JE, Müller NL (1994) Chronic infiltrative lung disease: comparison of diagnostic accuracies of radiography and low- and conventional-dose thin-section CT. Radiology 191:669–673

    PubMed  CAS  Google Scholar 

  • Madani A, De Maertelaer V, Zanen J, Gevenois PA (2007) Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification—comparison with macroscopic and microscopic morphometry. Radiology 243:250–257

    Article  PubMed  Google Scholar 

  • Massaro GD, Massaro D (1997) Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med 3:675–677 (Erratum in: Nat Med 3(7):805, July 1997)

    Google Scholar 

  • Mayo JR, Webb WR, Gould R et al (1987) High-resolution CT of the lungs: an optimal approach. Radiology 163:507–510

    PubMed  CAS  Google Scholar 

  • Mayo JR, Whittall KP, Leung AN et al (1997) Simulated dose reduction in conventional chest CT: validation study. Radiology 202:453–457

    PubMed  CAS  Google Scholar 

  • Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI (1990) Low-dose CT of the lungs: preliminary observations. Radiology 175:729–731

    PubMed  CAS  Google Scholar 

  • National Lung Screening Trial Team (2011) The national lung screening trial: overview and study design. Radiology 258:243–253

    Article  Google Scholar 

  • Newell JD, Hogg JC, Snider GL (2004) Report of a workshop: quantitative computed tomography scanning in longitudinal studies of emphysema. Eur Respir J 23:769–775

    Article  PubMed  Google Scholar 

  • O’Connor OJ, Vandeleur M, McGarrigle AM, Moore N, McWilliams SR, McSweeney SE, O’Neill M, Ni Chroinin M, Maher MM (2010) Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 257:820–829

    Article  PubMed  Google Scholar 

  • Pontana F, Pagniez J, Flohr T et al (2011a) Chest computed tomography using iterative reconstruction versus filtered back projection (part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21:627–635

    Article  PubMed  Google Scholar 

  • Pontana F, Duhamel A, Pagniez J et al (2011b) Chest computed tomography using iterative reconstruction versus filtered back projection (part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21:636–643

    Article  PubMed  Google Scholar 

  • Rennard S, Decramer M, Calverley PM, Pride NB, Soriano JB, Vermeire PA, Vestbo J (2002) Impact of COPD in North America and Europe in 2000: subjects’ perspective of confronting COPD international survey. Eur Respir J 20:799–805

    Article  PubMed  CAS  Google Scholar 

  • Rogers L (2001a) Radiation exposure in CT: why so high? Am J Roentgenol 177:277

    CAS  Google Scholar 

  • Rogers LF (2001b) Serious business: radiation safety and radiation protection. Am J Roentgenol 177:1

    CAS  Google Scholar 

  • Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, Szucs-Farkas Z (2009) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655

    Article  PubMed  Google Scholar 

  • Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    Article  PubMed  Google Scholar 

  • Shrimpton PC, Hillier MC, Lewis MA et al (2003) Data from computed tomography (CT) examinations in the UK—2003 review. NRPB-W67, National Radiological Protection Board, Chilton

    Google Scholar 

  • Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multidetector row chest CT in adults: feasability and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  • Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Google Scholar 

  • Snider GL, Kleinerman JL, Thurlbeck WM et al (1985) The definition of emphysema: report of a National Heart, Lung, and Blood Institute, Division of Lung Disease workshop. Am Rev Respir Dis 132:182–185

    Google Scholar 

  • Studler U, Gluecker T, Bongartz G, Roth J, Steinbrich W (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. Am J Roentgenol 185:602–607

    Google Scholar 

  • Swensen SJ, Jett JR, Sloan JA et al (2002) Screening for lung cancer with low-dose spiral computed tomography. Am J Respir Crit Care Med 165:508–513

    PubMed  Google Scholar 

  • Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 and 120 kVp protocols in a matched cohort. Invest Radiol 44:793–799

    Article  PubMed  Google Scholar 

  • Tack D, De Maertelaer V, Petit W, Scillia P, Muller P, Suess C, Gevenois PA (2005) Comparisons of standard-dose and simulated low-dose multi-detector-row CT pulmonary angiography. Radiology 236:318–325

    Article  PubMed  Google Scholar 

  • Unscear (2000) Sources and effects of ionizing radiation. United Nations scientific committee on the effects of atomic radiation report to the General Assembly. United Nations, New York

    Google Scholar 

  • Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS (2007) Circle of Willis at CT angiography: dose reduction and image quality–reducing tube voltage and increasing tube current settings. Radiology 242:829–832

    Article  Google Scholar 

  • Wittenberg R, Peters JF, Sonnemans JJ et al (2011) Impact of image quality on the performance of computer-aided detection of pulmonary embolism. Am J Roentgenol 196:95–101

    Article  Google Scholar 

  • Zwirewich CV, Mayo JR, Müller NL (1991) Low-dose high-resolution CT of lung parenchyma. Radiology 180:413–417

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Alain Gevenois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gevenois, P.A., Tack, D. (2011). Dose Reduction and Optimization in Computed Tomography of the Chest. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_419

Download citation

  • DOI: https://doi.org/10.1007/174_2011_419

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics