Advertisement

MRI Guidance of Vascular Applications

  • Gabriele A. Krombach
Part of the Medical Radiology book series (MEDRAD)

Abstract

MRI-guided endovascular interventions are appealing because of the high soft tissue contrast of MRI, the ability to perform luminographic angiography with and without the application of contrast medium, the inherent possibility, to assess physiologic function, such as flow, tissue perfusion and diffusion, and the ability to characterize tissue via spectroscopy. MRI-guided endovascular interventions have added diagnostic value in comparison to X-ray-guided procedures, since prior to the intervention the target for the interventional procedure can be assessed and during and after the intervention the effect on morphology, function, and metabolism can be monitored. The technical requirements for endovascular interventions, namely, dedicated systems, patient monitoring systems, real-time imaging that allows delineation of vessels, interventional devices, and target regions, and thorough protocols have been developed. Recently, technical maturation of interventional MRI and simultaneous development of MRI in other areas, namely, the development of magnetic resonance (MR)-safe conductors and the advent of molecular imaging, promise to open up the avenue of MRI-guided interventions to interventions that can not be performed in another imaging environment. Soon, MRI-guided endovascular procedures might revolutionize the field of endovascular procedures.

Keywords

Endovascular Intervention Transjugular Intrahepatic Portosystemic Shunt Endovascular Coil Slice Position Intraarterial Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson KJ, Leung G, Dick AJ, Wright GA (2008) Forward-looking intravascular orthogonal-solenoid coil for imaging and guidance in occlusive arterial disease. Magn Reson Med 60:489–495PubMedCrossRefGoogle Scholar
  2. Arepally A, Karmarkar PV, Weiss C, Atalar E (2006) Percutaneous MR imaging-guided transvascular access of mesenteric venous system: study in swine model. Radiology 238:113–118PubMedCrossRefGoogle Scholar
  3. Bakker CJ, Hoogeveen RM, Hurtak WF, Van Vaals JJ, Viergever MA, Mali WP (1997) MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology 202:273–276PubMedGoogle Scholar
  4. Bakker CJ, Smits HF, Bos C, van Der WR, Zuiderveld KJ, van Vaals JJ, Hurtak WF, Viergever MA, Mali WP (1998) MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for guiding, monitoring, and evaluating endovascular interventions. J Magn Reson Imaging 8:245–250PubMedCrossRefGoogle Scholar
  5. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JW (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991PubMedCrossRefGoogle Scholar
  6. Bartels LW, Bos C, van Der WR, Smits HF, Bakker CJ, Viergever MA (2000) Placement of an inferior vena cava filter in a pig guided by high-resolution MR fluoroscopy at 1.5 T. J Magn Reson Imaging 12:599–605PubMedCrossRefGoogle Scholar
  7. Bock M, Volz S, Zuhlsdorff S, Umathum R, Fink C, Hallscheidt P, Semmler W (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19:580–589PubMedCrossRefGoogle Scholar
  8. Boussel L, Arora S, Rapp J, Rutt B, Huston J, Parker D, Yuan C, Bassiouny H, Saloner D (2009) Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging—multicenter trial. Radiology 252:789–796PubMedCrossRefGoogle Scholar
  9. Dharmakumar R, Koktzoglou I, Tang R, Harris KR, Beohar N, Li D (2008) Off-resonance positive contrast imaging of a passive endomyocardial catheter in swine. Phys Med Biol 53:249–257PubMedCrossRefGoogle Scholar
  10. Eggebrecht H, Kuhl H, Kaiser GM, Aker S, Zenge MO, Stock F, Breuckmann F, Grabellus F, Ladd ME, Mehta RH, Erbel R, Quick HH (2006) Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J 27:613–620PubMedCrossRefGoogle Scholar
  11. Fahrig R, Butts K, Wen Z, Saunders R, Kee ST, Sze DY, Daniel BL, Laerum F, Pelc NJ (2001) Truly hybrid interventional MR/X-ray system: investigation of in vivo applications. Acad Radiol 8:1200–1207PubMedCrossRefGoogle Scholar
  12. Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Guhde R, Delapaz RL, Bishop PL, Pile-Spellman J (2005) Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology 234:551–557PubMedCrossRefGoogle Scholar
  13. Fink C, Bock M, Umathum R, Volz S, Zuehlsdorff S, Grobholz R, Kauczor HU, Hallscheidt P (2004) Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intraarterial magnetic resonance angiography. Invest Radiol 39:111–119PubMedCrossRefGoogle Scholar
  14. Frericks BB, Elgort DR, Hillenbrand C, Duerk JL, Lewin JS, Wacker FK (2009) Magnetic resonance imaging-guided renal artery stent placement in a Swine model: comparison of two tracking techniques. Acta Radiol 50:21–27PubMedCrossRefGoogle Scholar
  15. Ganguly A, Wen Z, Daniel BL, Butts K, Kee ST, Rieke V, Do HM, Pelc NJ, Fahrig R (2005) Truly hybrid X-ray/MR imaging: toward a streamlined clinical system. Acad Radiol 12:1167–1177PubMedCrossRefGoogle Scholar
  16. George AK, Faranesh AZ, Ratnayaka K, Derbyshire JA, Lederman RJ, Hansen MS (2011) Virtual dye angiography: Flow visualization for MRI-guided interventions. Magn Reson Med. doi: 10.1002/mrm.23078
  17. Godart F, Beregi JP, Nicol L, Occelli B, Vincentelli A, Daanen V, Rey C, Rousseau J (2000) MR-guided balloon angioplasty of stenosed aorta: in vivo evaluation using near-standard instruments and a passive tracking technique. J Magn Reson Imaging 12:639–644PubMedCrossRefGoogle Scholar
  18. Huegli RW, Aschwanden M, Kos S, Rasmus M, Jaeger K, Jacob AL, Bilecen D (2008) Diagnostic pitfalls in postinterventional intraarterial magnetic resonance angiography after recanalization of femoropopliteal arterial occlusions. Acta Radiol 49:1129–1136PubMedCrossRefGoogle Scholar
  19. Kee ST, Ganguly A, Daniel BL, Wen Z, Butts K, Shimikawa A, Pelc NJ, Fahrig R, Dake MD (2005) MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol 16:227–234PubMedCrossRefGoogle Scholar
  20. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D (2009) Feasibility of real-time magnetic resonance-guided angioplasty and stenting of renal arteries in vitro and in Swine, using a new polyetheretherketone-based magnetic resonance-compatible guidewire. Invest Radiol 44:234–241PubMedCrossRefGoogle Scholar
  21. Kramer NA, Donker HC, Otto J, Hodenius M, Senegas J, Slabu I, Klinge U, Baumann M, Mullen A, Obolenski B, Gunther RW, Krombach GA (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45:477–483PubMedCrossRefGoogle Scholar
  22. Kraemer NA, Immel E, Donker HC, Melzer A, Ocklenburg C, Guenther RW, Buecker A, Krombach GA, Spuentrup E (2011) Evaluation of an active vena cava filter for MR imaging in a swine model. Radiology 258:446–454PubMedCrossRefGoogle Scholar
  23. Krombach GA, Wehner M, Perez-Bouza A, Kaimann L, Kinzel S, Plum T, Schibur D, Friebe M, Gunther RW, Hohl C (2008) Magnetic resonance-guided angioplasty with delivery of contrast-media doped solutions to the vessel wall: an experimental study in swine. Invest Radiol 43:530–537PubMedCrossRefGoogle Scholar
  24. Krueger JJ, Ewert P, Yilmaz S, Gelernter D, Peters B, Pietzner K, Bornstedt A, Schnackenburg B, Abdul-Khaliq H, Fleck E, Nagel E, Berger F, Kuehne T (2006) Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation 113:1093–1100PubMedCrossRefGoogle Scholar
  25. Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, Kraemer N, Spuentrup E, Krombach G, Buecker A (2008) An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med 60:1190–1196PubMedCrossRefGoogle Scholar
  26. Kuehne T, Yilmaz S, Schulze-Neick I, Wellnhofer E, Ewert P, Nagel E, Lange P (2005) Magnetic resonance imaging guided catheterization for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart 91:1064–1069PubMedCrossRefGoogle Scholar
  27. Larson AC, Wang D, Atassi B, Sato KT, Ryu RK, Lewandowski RJ, Nemcek AA, Jr, Mulcahy MF, Kulik LM, Miller FH, Salem R, Omary RA (2008) Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma–feasibility of initial clinical translation. Radiology 246:964–971Google Scholar
  28. Link TW, Woodrum D, Gilson WD, Pan L, Qian D, Kraitchman DL, Bulte JW, Arepally A, Weiss CR (2011) MR-guided portal vein delivery and monitoring of magnetocapsules: assessment of physiologic effects on the liver. J Vasc Interv Radiol 22:1335–1340PubMedCrossRefGoogle Scholar
  29. Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Volk M, Feuerbach S, Link J (2001) MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 219:527–534PubMedGoogle Scholar
  30. Martin AJ, Weber OM, Saeed M, Roberts TP (2003) Steady-state imaging for visualization of endovascular interventions. Magn Reson Med 50:434–438PubMedCrossRefGoogle Scholar
  31. Mekle R, Zenge MO, Ladd ME, Quick HH, Hofmann E, Scheffler K, Bilecen D (2009) Initial in vivo studies with a polymer-based MR-compatible guide wire. J Vasc Interv Radiol 20:1384–1389PubMedCrossRefGoogle Scholar
  32. Paetzel C, Zorger N, Bachthaler M, Hamer OW, Stehr A, Feuerbach S, Lenhart M, Volk M, Herold T, Kasprzak P, Nitz WR (2005) Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol 40:257–262PubMedCrossRefGoogle Scholar
  33. Park JK, Rhee TK, Cashen TA, Shin W, Resnick SA, Gehl JA, Schirf BE, Wang D, Larson AC, Carroll TJ, Omary RA (2007a) MR imaging assessment of changes in renal function with renal artery stent placement in swine. J Vasc Interv Radiol 18:1409–1416PubMedCrossRefGoogle Scholar
  34. Park JK, Rhee TK, Cashen TA, Shin W, Schirf BE, Gehl JA, Larson AC, Prasad PV, Li D, Carroll TJ, Omary RA (2007b) Renal artery stenosis in swine: feasibility of MR assessment of renal function during percutaneous transluminal angioplasty. Radiology 244:144–150PubMedCrossRefGoogle Scholar
  35. Poschenrieder F, Hamer OW, Herold T, Schleicher T, Borisch I, Feuerbach S, Zorger N (2009) Magnostic accuracy of intraarterial and i.v. MR angiography for the detection of stenoses of the infrainguinal arteries. AJR Am J Roentgenol 192:117–121PubMedCrossRefGoogle Scholar
  36. Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, Aviles RJ, Xu M, Wright VJ, Schenke WH, Kocaturk O, Dick AJ, Raman VK, Atalar E, McVeigh ER, Lederman RJ (2006) Real-time magnetic resonance imaging-guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation 113:1101–1107PubMedCrossRefGoogle Scholar
  37. Rhee TK, Park JK, Cashen TA, Shin W, Schirf BE, Gehl JA, Larson AC, Carr JC, Li D, Carroll TJ, Omary RA (2006) Comparison of intraarterial MR angiography at 3.0 T with X-ray digital subtraction angiography for detection of renal artery stenosis in swine. J Vasc Interv Radiol 17:1131–1137PubMedCrossRefGoogle Scholar
  38. Sathyanarayana S, Schar M, Kraitchman DL, Bottomley PA (2010) Towards real-time intravascular endoscopic magnetic resonance imaging. JACC Cardiovasc Imaging 3:1158–1165PubMedCrossRefGoogle Scholar
  39. Seppenwoolde JH, Bartels LW, van Der WR, Nijsen JF, het Schip AD, Bakker CJ (2006) Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging 23:123–129PubMedCrossRefGoogle Scholar
  40. Spuentrup E, Ruebben A, Schaeffter T, Manning WJ, Gunther RW, Buecker A (2002) Magnetic resonance–guided coronary artery stent placement in a swine model. Circulation 105:874–879PubMedCrossRefGoogle Scholar
  41. Tepe G, Zeller T, Albrecht T, Heller S, Schwarzwalder U, Beregi JP, Claussen CD, Oldenburg A, Scheller B, Speck U (2008) Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 358:689–699PubMedCrossRefGoogle Scholar
  42. Tong N, Shmatukha A, Asmah P, Stainsby J (2010) Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol 55:13–22PubMedCrossRefGoogle Scholar
  43. Tzifa A, Krombach GA, Kramer N, Kruger S, Schutte A, von Walter M, Schaeffter T, Qureshi S, Krasemann T, Rosenthal E, Schwartz CA, Varma G, Buhl A, Kohlmeier A, Bucker A, Gunther RW, Razavi R (2010) Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv 3:585–592PubMedCrossRefGoogle Scholar
  44. Vin AP, Rhee TK, Ryu RK, Larson AC, Nikolaidis P, Chrisman HB, Vogelzang RL, Omary RA (2007) Use of a combined MR imaging and interventional radiology suite for intraprocedural monitoring of uterine artery embolization. J Vasc Interv Radiol 18:1362–1367PubMedCrossRefGoogle Scholar
  45. Virmani S, Wang D, Harris KR, Ryu RK, Sato KT, Lewandowski RJ, Nemcek AA Jr, Szolc-Kowalska B, Woloschak G, Salem R, Larson AC, Omary RA (2007) Comparison of transcatheter intraarterial perfusion MR imaging and fluorescent microsphere perfusion measurements during transcatheter arterial embolization of rabbit liver tumors. J Vasc Interv Radiol 18:1280–1286Google Scholar
  46. Vogl TJ, Balzer JO, Mack MG, Bett G, Oppelt A (2002) Hybrid MR interventional imaging system: combined MR and angiography suites with single interactive table. Feasibility study in vascular liver tumor procedures. Eur Radiol 12:1394–1400PubMedCrossRefGoogle Scholar
  47. Wacker FK, Reither K, Ebert W, Wendt M, Lewin JS, Wolf KJ (2003) MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SH U 555 C as an intravascular contrast agent: study in pigs. Radiology 226:459–464PubMedCrossRefGoogle Scholar
  48. Wacker FK, Hillenbrand C, Elgort DR, Zhang S, Duerk JL, Lewin JS (2005) MR imaging-guided percutaneous angioplasty and stent placement in a swine model comparison of open- and closed-bore scanners. Acad Radiol 12:1085–1088PubMedCrossRefGoogle Scholar
  49. Wang D, Jin B, Lewandowski RJ, Ryu RK, Sato KT, Mulcahy MF, Kulik LM, Miller FH, Salem R, Li D, Omary RA, Larson AC (2010) Quantitative 4D transcatheter intraarterial perfusion MRI for monitoring chemoembolization of hepatocellular carcinoma. J Magn Reson Imaging 31:1106–1116PubMedCrossRefGoogle Scholar
  50. Wang D, Gaba RC, Jin B, Riaz A, Lewandowski RJ, Ryu RK, Sato KT, Ragin AB, Kulik LM, Mulcahy MF, Salem R, Larson AC, Omary RA (2011) Intraprocedural transcatheter intra-arterial perfusion MRI as a predictor of tumor response to chemoembolization for hepatocellular carcinoma. Acad Radiol 18:828–836PubMedCrossRefGoogle Scholar
  51. Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B (2005) Transmission line for improved RF safety of interventional devices. Magn Reson Med 54:182–189PubMedCrossRefGoogle Scholar
  52. Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Radiology, Campus GiessenUniversity Hospitals Giessen and MarburgGiessenGermany

Personalised recommendations