Radiation Exposure and Risk Associated with CT Examinations

  • Gunnar Brix
  • Elke A. Nekolla
Part of the Medical Radiology book series (MEDRAD)


Medical imaging procedures using ionizing radiation always pose some risk of adverse health effects to the persons examined–in particular radiation-induced cancer. It is thus necessary to carefully balance the benefits and risks of these examinations. This particularly applies to CT examinations being a major source of patient and man-made population exposure. This chapter briefly reviews the evidence on health effects induced by ionizing radiation, presents the essential concepts to estimate radiation doses and risks related to CT examinations, identifies technology-specific factors influencing patient exposure and, finally, outlines application-specific measures to reduce radiation risks to patients undergoing CT procedures.


Organ Dose Radiation Risk Atomic Bomb Survivor Life Span Study Diagnostic Reference Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amis ES Jr, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM, Mettler FA, Morin RL, Pentecost MJ, Smith GG, Strauss KJ, Zeman RK (2007) American College of Radiology. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 4:272–284PubMedCrossRefGoogle Scholar
  2. Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 363:345–351PubMedCrossRefGoogle Scholar
  3. BEIR-VII (2006). Committee to assess health risks from exposure to low levels of ionizing radiation. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, WashingtonGoogle Scholar
  4. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  5. Beyan C, Kaptan K, Ifran A, Ocal R, Ulutin C, Oztürk B (2007) The effect of radiological imaging studies on the risk of secondary malignancy developed in patients with Hodgkin lymphoma. Clin Lymphoma Myeloma 7:467–469PubMedCrossRefGoogle Scholar
  6. Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Rodríguez R, Schneider K, Calzado A, Geleijns J, Jessen KA, Panzer W, Shrimpton PC, Tosi G (2004) European guidelines for multislice computed tomography. Accessed 12 Dec 2010
  7. Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, Galanski M (2003) Radiation exposure in multi-slice versus single-slice spiral CT: Results of a nationwide survey. Eur Radiology 13:1979–1991CrossRefGoogle Scholar
  8. Brix G, Lechel U, Veit R, Truckenbrodt R, Stamm G, Coppenrath EM, Griebel J, Nagel HD (2004) Assessment of a theoretical formalism for dose estimation in CT: An anthropomorphic phantom study. Eur Radiol 14:1275–1284PubMedCrossRefGoogle Scholar
  9. Brix G, Nissen-Meyer S, Lechel U, Nissen-Meyer J, Griebel J, Nekolla EA, Becker C, Reiser M (2009) Radiation exposures of cancer patients from medical X-rays: How relevant are they for individual patients and population Exposure? Eur J Radiol 72:342–347PubMedCrossRefGoogle Scholar
  10. Catalano C, Francone M, Ascarelli A, Mangia M, Iacucci I, Passariello R (2007) Optimizing radiation dose and image quality. Eur Radiol 17(Suppl 6):F26–F32PubMedGoogle Scholar
  11. Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiol 252:140–147CrossRefGoogle Scholar
  12. DeStatis (2004) Gesundheitswesen, Todesursachen in Deutschland (Causes of Death in Germany) Fachserie 12/Reihe 4. Ed: Statistisches Bundesamt (Federal Office for Statistics), WiesbadenGoogle Scholar
  13. DeStatis (Federal Office for Statistics) (ed) (2010) Statistisches Jahrbuch 2010 für die Bundesrepublik Deutschland (Statistical Yearbook 2010 for the Federal Republic of Germany). Metzler-Poeschel, StuttgartGoogle Scholar
  14. GEKID (Association of population-based cancer registries in Germany and Robert-Koch institute) (2010) Cancer in Germany. Incidence and trends. 7th revised, updated edn., SaarbrückenGoogle Scholar
  15. Gudjónsdóttir J, Ween B, Olsen DR (2010) Optimal use of AEC in CT: a literature review. Radiol Technol 81:309–317PubMedGoogle Scholar
  16. ICRP-60 (1991) Publication 60. The 1990 recommendations of the international commission on radiological protection. Annals of the ICRP 21(1–3)Google Scholar
  17. ICRP-103 (2007) Publication 103. The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Annals of the ICRP 37(2–4)Google Scholar
  18. ICRP-105 (2007) Publication 105. Radiological protection in medicine. Annals of the ICRP 37(6)Google Scholar
  19. ImPACT (2010) Imaging performance assessment of CT-scanners group. ImPACT CT patient dosimetry calculator, V. 1.0.3. Accessed 12 Dec 2010
  20. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562PubMedCrossRefGoogle Scholar
  21. Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79PubMedCrossRefGoogle Scholar
  22. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  23. Kalra MK, Naz N, Rizzo SM, Blake MA (2005) Computed tomography radiation dose optimization: scanning protocols and clinical applications of automatic exposure control. Curr Probl Diagn Radiol 34:171–181PubMedCrossRefGoogle Scholar
  24. Leander P, Söderberg M, Fält T, Gunnarsson M, Albertsson I (2010) Post-processing image filtration enabling dose reduction in standard abdominal CT. Radiat Prot Dosimetry 139:180–185PubMedCrossRefGoogle Scholar
  25. Lechel U, Becker C, Langenfeld-Jäger G, Brix G (2009) Dose reduction by automatic exposure control in multi-slice computed tomography—Comparison between measurement and calculation. Eur Radiol 19:1027–1034PubMedCrossRefGoogle Scholar
  26. Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, Lipoti JA, Mahesh M, McCrohan JL, Stabin MG, Thomadsen BR, Yoshizumi TT (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253:520–531PubMedCrossRefGoogle Scholar
  27. Nagel HD, Galanski M, Hidajat N, Maier W, Schmidt T (2002) Radiation exposure in computed tomography—fundamentals, influencing parameters, dose assessment, optimisation, scanner data, terminology. 4th edn. CTB Publications (, HamburgGoogle Scholar
  28. Nekolla EN, Griebel J, Brix G (2010) Strahlenhygiene in der medizinischen Röntgenbildgebung, Teil 3: Strahlenexposition des Patienten und Risikobewertung. Radiologe 50:1039–1054PubMedCrossRefGoogle Scholar
  29. Nievelstein RA, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344PubMedCrossRefGoogle Scholar
  30. Nishizawa K, Matsumoto M, Iwai K, Maruyama T (2004) Survey of CT practice in apan and collective effective dose estimation. Nippon Acta Radiologica 64:151–158Google Scholar
  31. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–164PubMedCrossRefGoogle Scholar
  32. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 194:191–199PubMedCrossRefGoogle Scholar
  33. Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, Khorasani R (2009) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251:175–184PubMedCrossRefGoogle Scholar
  34. Stamm G, Nagel HD (2002) CT-Expo—ein neuartiges Programm zur Dosisevaluierung in der CT. Fortschr Rontgenstr 174:1570–1576CrossRefGoogle Scholar
  35. UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation. sources and effects of ionizing radiation. UNSCEAR 1994 report, Effects, Annex G, vol 2, United Nations, New YorkGoogle Scholar
  36. UNSCEAR (2010) United Nations scientific committee on the effects of atomic radiation. sources and effects of ionizing radiation. UNSCEAR 2008 report, Sources, Annex A: Medical Radiation Exposures, vol 1, United Nations, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Medical and Occupational Radiation ProtectionFederal Office for Radiation ProtectionNeuherbergGermany

Personalised recommendations