Physical Background of Multi Detector Row Computed Tomography

Part of the Medical Radiology book series (MEDRAD)


We explain the physical background of multi detector row CT (MDCT) technology. We demonstrate the clinical benefits of MDCT, which are faster scan time, increased volume coverage and improved through-plane resolution. We discuss the design of X-ray tubes and MDCT detectors as well as scan and image reconstruction techniques and their specific properties. Finally, we give an outlook to modern high-pitch acquisition techniques.


Slice Width Image Reconstruction Technique Anode Plate Spiral Pitch Fast Gantry Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achenbach S, Marwan M, Schepis T, Pflederer T, Bruder H, Allmendinger T, Petersilka M, Anders K, Lell M, Kuettner A, Ropers D, Daniel WG, Flohr T (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121PubMedCrossRefGoogle Scholar
  2. Crawford CR, King KF (1990) Computed tomography scanning with simultaneous patient translation. Med Phys 17:967–982PubMedCrossRefGoogle Scholar
  3. Dewey M, Zimmermann E, Deissenrieder F, Laule M, Dübel HP, Schlattmann P, Knebel F, Rutsch W, Hamm B (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120(10):867–875PubMedCrossRefGoogle Scholar
  4. Earls JP, Berman EL, Urban BA, Curry CA, Lane JL, Jennings RS, McCulloch CC, Hsieh J, Londt JH (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753PubMedCrossRefGoogle Scholar
  5. Flohr T, Stierstorfer K, Bruder H, Simon J, Schaller S (2002a) New technical developments CT in multislice: part 1: approaching isotropic resolution with sub-mm 16-slice scanning. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:839–845PubMedCrossRefGoogle Scholar
  6. Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B (2002b) new technical developments CT in multislice: part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:1022–1027PubMedCrossRefGoogle Scholar
  7. Flohr T, Stierstorfer K, Bruder H, Simon J, Polacin A, Schaller S (2003) Image reconstruction and image quality evaluation for a 16-slice CT scanner. Med Phys 30(5):832–845PubMedCrossRefGoogle Scholar
  8. Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT-system with z-flying focal spot. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:1803–1810PubMedCrossRefGoogle Scholar
  9. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32(8):2536–2547PubMedCrossRefGoogle Scholar
  10. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süß C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Küttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268PubMedCrossRefGoogle Scholar
  11. Flohr TG, Leng S, Yu L, Aiimendinger T, Bruder H, Petersilka M, Eusemann CD, Stierstorfer K, Schmidt B, McCollough CH (2009) Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med Phys 36(12):5641–5653PubMedCrossRefGoogle Scholar
  12. Goetti R, Leschka S, Desbiolles L, Klotz E, Samaras P, von Boehmer L, Stenner F, Reiner C, Stolzmann P, Scheffel H, Knuth A, Marincek B, Alkadhi H (2010) Quantitative computed tomography liver perfusion imaging using dynamic spiral scanning with variable pitch: feasibility and initial results in patients with cancer metastases. Invest Radiol 45(7):419–426PubMedGoogle Scholar
  13. Grass M, Köhler T, Proksa R (2000) 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol 45(2):329–347PubMedCrossRefGoogle Scholar
  14. Hein I, Taguchi K, Silver MD, Kazarna M, Mori I (2003) Feldkamp-based cone-beam reconstruction for gantry-tilted helical multislice CT. Med Phys 30(12):3233–3242PubMedCrossRefGoogle Scholar
  15. Hsieh J (2003) Analytical models for multi-slice helical CT performance parameters. Med Phys 30(2):169–178PubMedCrossRefGoogle Scholar
  16. Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26(1):5–18PubMedCrossRefGoogle Scholar
  17. Hu H, He HD, Foley WD, Fox SH (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215:55–62PubMedGoogle Scholar
  18. International Electrotechnical Commission 60601-2-44 (2002) Amendment 1: medical electrical equipment: part 2–44: particular requirements for the safety of X-ray equipment for computed tomography. International Electrotechnical Commission, GenevaGoogle Scholar
  19. Kachelriess M, Ulzheimer S, Kalender W (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27:1881–1902PubMedCrossRefGoogle Scholar
  20. Kalender W, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport and continuous scanner rotation. Radiology 176:181–183PubMedGoogle Scholar
  21. Kalender W (1995) Thin-section three-dimensional spiral CT: is isotropic imaging possible? Radiology 197:578–580PubMedGoogle Scholar
  22. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multi-slice computed tomography: basics and applications. EJR 31:110–124CrossRefGoogle Scholar
  23. Kondo C, Mori S, Endo M, Kusakabe K, Suzuki N, Hattori A, Kusakabe M (2005) Real-time volumetric imaging of human heart without electrocardiographic gating by 256-detector row computed tomography: initial experience. J Comput Assist Tomogr 29(5):694–698PubMedCrossRefGoogle Scholar
  24. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive, nonobstructive coronary lesions by 64-slice computed tomography. JACC 46(1):147–154PubMedGoogle Scholar
  25. Lell M, Marwan M, Schepis T, Pflederer T, Anders K, Flohr T, Allmendinger T, Kalender W, Ertel D, Thierfelder C, Kuettner A, Ropers D, Daniel WG, Achenbach S (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19(11):2576–2583PubMedCrossRefGoogle Scholar
  26. Leschka S, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Schertler T, Scheffel H, Plass A, Falk V, Feuchtner G, Marincek B, Alkadhi H (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRefGoogle Scholar
  27. McCollough CH, Zink FE (1999) Performance evaluation of a multi-slice CT system. Med Phys 26:2223–2230PubMedCrossRefGoogle Scholar
  28. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 47(1):27–40PubMedCrossRefGoogle Scholar
  29. Mori S, Endo M, Tsunoo T, Kandatsu S, Tanada S, Aradate H et al (2004) Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys 31(6):1348–1356PubMedCrossRefGoogle Scholar
  30. Mori S, Kondo C, Suzuki N, Hattori A, Kusakabe M, Endo M (2006) Volumetric coronary angiography using the 256-detector row computed tomography scanner: comparison in vivo and in vitro with porcine models. Acta Radiol 47(2):186–191PubMedCrossRefGoogle Scholar
  31. Napel S, Rubin GD, Jeffrey RB (1993) STS-MIP: a new reconstruction technique for CT of the chest. JCAT 17(5):832–838Google Scholar
  32. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  33. Ohnesorge B, Flohr T, Becker C, Kopp A, Schoepf U, Baum U, Knez A, Klingenbeck-Regn K, Reiser M (2000) Cardiac imaging by means of electrocardiographically gated multisection spiral CT—initial experience. Radiology 217:564–571PubMedGoogle Scholar
  34. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368PubMedCrossRefGoogle Scholar
  35. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of non-invasive coronary angiography using 64-slice spiral computed tomography. JACC 46(3):552–557PubMedGoogle Scholar
  36. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666PubMedCrossRefGoogle Scholar
  37. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546PubMedCrossRefGoogle Scholar
  38. Schaller S, Flohr T, Klingenbeck K, Krause J, Fuchs T, Kalender WA (2000) Spiral interpolation algorithm for multi-slice spiral CT—part I: theory. IEEE Trans Med Imaging 19(9):822–834PubMedCrossRefGoogle Scholar
  39. Schaller S, Stierstorfer K, Bruder H, Kachelrieß M, Flohr T (2001a) Novel approximate approach for high-quality image reconstruction in helical cone beam CT at arbitrary pitch. Proc SPIE Int Symp Med Imaging 4322:113–127Google Scholar
  40. Schaller S, Niethammer MU, Chen X, Klotz E, Wildberger JE, Flohr T (2001) Comparison of signal-to-noise and dose values at different tube voltages for protocol optimization in pediatric CT. In: Abstract book of the 87th Scientific assembly and annual meeting of the RSNA, p 366Google Scholar
  41. Schardt P, Deuringer J, Freudenberger J, Hell E, Knuepfer W, Mattern D, Schild M (2004) New X-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 31(9):2699–2706PubMedCrossRefGoogle Scholar
  42. Scheffel H, Alkadhi H, Leschka S, Plass A, Desbiolles L, Guber I, Krauss T, Gruenenfelder J, Genoni M, Luescher TF, Marincek B, Stolzmann P (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94(9):1132–1137PubMedCrossRefGoogle Scholar
  43. Shankar JJS, Lum C, Sharma M (2010) Whole-brain perfusion imaging with 320-MDCT scanner: reducing radiation dose by increasing sampling interval. AJR 195:1183–1186CrossRefGoogle Scholar
  44. Stierstorfer K, Rauscher A, Boese J, Bruder H, Schaller S, Flohr T (2004) Weighted FBP—a simple approximative 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys Med Biol 49:2209–2218PubMedCrossRefGoogle Scholar
  45. Taguchi T, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med Phys 25(4):550–561PubMedCrossRefGoogle Scholar
  46. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Computed Tomography and Radiation OncologySiemens HealthcareForchheimGermany

Personalised recommendations