MR-Compatible Instruments for Interventional MRI

Part of the Medical Radiology book series (MEDRAD)


Several attributes make magnetic resonance imaging (MRI) attractive for guidance of intravascular therapeutic procedures, including high soft tissue contrast, imaging in arbitrary oblique planes, lack of ionizing radiation, and the ability to provide functional information, such as flow velocity or flow volume per unit time, in conjunction with morphologic information. For MR guidance of vascular interventions to be safe, the interventionalist must be able to visualize catheters and guidewires relative to the vascular system and surrounding tissues. Several approaches for rendering instruments visible in an MR environment have been developed, including passive, active, and wireless active hybrid techniques. This chapter reviews the technical and clinical requirements for MR-compatible interventional instruments. The basic techniques for MR-guided instrument visualization are demonstrated with current examples from preclinical cardiovascular interventions such as MR-guided guidewire and catheter tracking, aortic stent grafting, and MR-guided transarterial aortic valve implantation (TAVI). Issues of MR safety related to interventional devices in an MRI environment are discussed.


Aortic Stent Graft Interventional Magnetic Resonance Imaging Magnetic Resonance Guidance Magnetic Resonance Imaging Environment Ferromagnetic Attraction 



Magnetic resonance


Magnetic resonance imaging




Radio frequency


Transarterial aortic valve implantation


True fast imaging with steady-state precession


  1. American Society for Testing and Materials (2004) Standard test method for measurement of radio frequency induced heating near passive implants during magnetic resonance imaging (F2182–02a). ASTM International, West ConshohockenGoogle Scholar
  2. Arnder LL, Shattuck MD, Black RD (1996) Signal-to-noise ratio comparison between surface coils and implanted coils. Magn Reson Med 35:727–733PubMedCrossRefGoogle Scholar
  3. Atalar E (1999) Safe coaxial cables. In: Proceedings, ISMRM, 7th scientific meeting and exhibition, Philadelphia, p 1006Google Scholar
  4. Bakker CJ, Hoogeveen RM, Hurtak WF, van Vaals JJ, Viergever MA, Mali WP (1997) MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology 202:273–276PubMedGoogle Scholar
  5. Bartels LW, Smits HF, Bakker CJ, Viergever MA (2001) MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol 12:365–371PubMedCrossRefGoogle Scholar
  6. Bluemke DA, Stillman AE, Bis KG, Grist TM, Baum RA, D’Agostino R, Malden ES, Pierro JA, Yucel EK (2001) Carotid MR angiography: phase II study of safety and efficacy for MS-325. Radiology 219:114–122PubMedGoogle Scholar
  7. Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, van Vaals JJ, Günther RW (2004) Use of a nonmetallic guide wire for magnetic resonance-guided coronary artery catheterization. Invest Radiol 39(11):656–660PubMedCrossRefGoogle Scholar
  8. Burl M, Coutts GA, Young IA (1996) Tuned fiducial markers to identify body locations with minimalperturbation of tissue magnetization. Magn Reson Med 36:491–493PubMedCrossRefGoogle Scholar
  9. Burl M, Coutts GA, Herlihy DJ, Hill-Cottingham R, Eastham JF, Hajnal JV, Young IR (1999) Twisted-pair RF coil suitable for locating the track of a catheter. Magn Reson Med 41:636–638PubMedCrossRefGoogle Scholar
  10. Celik H, Atalar E (2011) Reverse polarized inductive coupling to transmit and receive radiofrequency coil arrays. Magn Reson Med. doi: 10.1002/mrm.23030
  11. Celik H, Ulutürk A, Tali T, Atalar E (2007) A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med 58(6):1224–1231PubMedCrossRefGoogle Scholar
  12. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415PubMedCrossRefGoogle Scholar
  13. Eggebrecht H, Zenge M, Ladd ME, Erbel R, Quick HH (2006a) In vitro evaluation of current thoracic aortic stent-grafts for real-time MR-guided placement. J Endovasc Ther 13(1):62–71PubMedCrossRefGoogle Scholar
  14. Eggebrecht H, Kühl H, Kaiser GM, Aker S, Zenge MO, Stock F, Breuckmann F, Grabellus F, Ladd ME, Mehta RH, Erbel R, Quick HH (2006b) Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J 27(5):613–620PubMedCrossRefGoogle Scholar
  15. Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS, Duerk JL (2003) Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging 18:621–626PubMedCrossRefGoogle Scholar
  16. Fandrey S, Weiss S, Muller J (2008) Development of an active intravascular MR device with an optical transmission system. IEEE Trans Med Imaging 27(12):1723–1727PubMedCrossRefGoogle Scholar
  17. Farmer TH, Cofer GP, Johnson GA (1990) Maximizing contrast to noise with inductively coupled implanted coils. Invest Radiol 25:552–558PubMedCrossRefGoogle Scholar
  18. Frayne R, Wehelie A, Yang Z, Hergenrother RW, Unal O, Strother CM, Yu H (1999) MR evaluation of signal-emitting coatings. In: Proceedings ISMRM 7th scientific meeting and exhibition, Philadelphia, p 580Google Scholar
  19. Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544PubMedGoogle Scholar
  20. Henderson JM, Tkach J, Phillips M, Baker K, Shellock M, Rezai AR (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery 57:1063–1066CrossRefGoogle Scholar
  21. Hilfiker PR, Quick HH, Debatin JF (1999) Plain and covered stent-grafts: in vitro evaluation of characteristics at three-dimensional MR angiography. Radiology 211:693–697PubMedGoogle Scholar
  22. Kahlert P, Eggebrecht H, Plicht B, Kraff O, McDougall I, Decker B, Erbel R, Ladd ME, Quick HH (2010) Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: in vitro evaluation and modification of existing devices. J Cardiovasc Magn Reson 12:58PubMedCrossRefGoogle Scholar
  23. Klemm T, Duda S, Machann J, Seekamp-Rahn K, Schnieder L, Claussen CD, Schick FJ (2000) MR imaging in the presence of vascular stents: a systematic assessment of artifacts for various stent orientations, sequence types, and field strengths. Magn Reson Imaging 12:606–615CrossRefGoogle Scholar
  24. Kocaturk O, Saikus CE, Guttman MA, Faranesh AZ, Ratnayaka K, Ozturk C, McVeigh ER, Lederman RJ (2009a) Whole shaft visibility and mechanical performance for active MR cathetersusing copper-nitinol braided polymer tubes. J Cardiovasc Magn Reson 11:29PubMedCrossRefGoogle Scholar
  25. Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, Lederman RJ (2009b) Active two-channel 0.035” guidewire for interventional cardiovascular MRI. J Magn Reson Imaging 30(2):461–465PubMedCrossRefGoogle Scholar
  26. Kochli VD, McKinnon GC, Hofmann E, von Schulthess GK (1994) Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med 31:309–314PubMedCrossRefGoogle Scholar
  27. Konings MK, Bartels LW, Smits HF, Bakker CJ (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85PubMedCrossRefGoogle Scholar
  28. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D (2009a) MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: feasibility study. Minim Invasive Ther Allied Technol 18(3):181–188PubMedCrossRefGoogle Scholar
  29. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D (2009b) Feasibility of real-time magnetic resonance-guided angioplasty and stenting of renal arteries in vitro and in swine, using a new polyetheretherketone-based magnetic resonance-compatible guidewire. Invest Radiol 44(4):234–241PubMedCrossRefGoogle Scholar
  30. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D (2009c) First magnetic resonance imaging-guided aortic stenting and cava filter placement using a polyetheretherketone-based magnetic resonance imaging-compatible guidewire in swine: proof of concept. Cardiovasc Intervent Radiol 32(3):514–521PubMedCrossRefGoogle Scholar
  31. Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, Kraemer N, Spuentrup E, Krombach G, Buecker A (2008) An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med 60(5):1190–1196 PubMedCrossRefGoogle Scholar
  32. Kuehne T, Fahrig R, Butts K (2003) Pair of resonant fiducial markers for localization of endovascular catheters at all catheter orientations. J Magn Reson Imaging 17:620–624PubMedCrossRefGoogle Scholar
  33. Kugel H, Bremer C, Püschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 13(4):690–694PubMedGoogle Scholar
  34. Kuhns PL (1988) Inductive coupling and tuning in NMR probes: applications. J Magn Reson 78:69–76Google Scholar
  35. Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 43:615–619PubMedCrossRefGoogle Scholar
  36. Ladd ME, Erhart P, Debatin JF, Hofmann E, Boesiger P, von Schulthess GK, McKinnon GC (1997) Guidewire antennas for MR fluoroscopy. Magn Reson Med 37:891–897PubMedCrossRefGoogle Scholar
  37. Ladd ME, Zimmermann GG, McKinnon GC, von Schulthess GK, Dumoulin CL, Darrow RD, Hofmann E, Debatin JF (1998a) Visualization of vascular guidewires using MR tracking. J Magn Reson Imaging 8:251–253PubMedCrossRefGoogle Scholar
  38. Ladd ME, Zimmermann GG, Quick HH, Debatin JF, Boesiger P, von Schulthess GK, McKinnon GC (1998b) Active MR visualization of a vascular guidewire in vivo. J Magn Reson Imaging 8:220–225PubMedCrossRefGoogle Scholar
  39. Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, Raman VK (2002) McVeigh ER catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 105:1282–1284PubMedGoogle Scholar
  40. Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E, von Schulthess GK (1995) Intravascular MR tracking catheter: preliminary experimental evaluation. Am J Roentgenol 164:1265–1270Google Scholar
  41. Luechinger R, Zeijlemaker VA, Pedersen EM, Mortensen P, Falk E, Duru F, Candinas R, Boesiger P (2005) In vivo heating of pacemaker leads during magnetic resonance imaging. Eur Heart J 26:376–383PubMedCrossRefGoogle Scholar
  42. McKinnon GC, Debatin JF, Leung DA, Wildermuth S, Holtz DJ, von Schulthess GK (1996) Towards active guidewire visualization in interventional magnetic resonance imaging. MAGMA 4:13–18PubMedCrossRefGoogle Scholar
  43. Mekle R, Hofmann E, Scheffler K, Bilecen D (2006) A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging 23(2):145–155 PubMedCrossRefGoogle Scholar
  44. Mekle R, Zenge MO, Ladd ME, Quick HH, Hofmann E, Scheffler K, Bilecen D (2009) Initial in vivo studies with a polymer-based MR-compatible guide wire. J Vasc Interv Radiol 20(10):1384–1389PubMedCrossRefGoogle Scholar
  45. Nanz D, Weishaupt D, Quick HH, Debatin JF (2000) TE-switched double-contrast enhanced visualization of vascular system and instruments for MR-guided interventions. Magn Reson Med 43:645–648PubMedCrossRefGoogle Scholar
  46. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114PubMedCrossRefGoogle Scholar
  47. Nordbeck P, Fidler F, Weiss I, Warmuth M, Friedrich MT, Ehses P, Geistert W, Ritter O, Jakob PM, Ladd ME, Quick HH, Bauer WR (2008) Spatial distribution of RF-induced E-fields and implant heating in MRI. Magn Reson Med 60:312–319PubMedCrossRefGoogle Scholar
  48. Ocali O, Atalar E (1997) Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 37:112–118PubMedCrossRefGoogle Scholar
  49. Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM, Grist TM (2000) Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol 11(8):1079–1085 PubMedCrossRefGoogle Scholar
  50. Quick HH, Ladd ME, Nanz D, Mikolajczyk KP, Debatin JF (1999) Vascular stents as RF antennas for intravascular MR guidance and imaging. Magn Reson Med 42:738–745PubMedCrossRefGoogle Scholar
  51. Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, Ladd ME (2003) Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med 49:129–137PubMedCrossRefGoogle Scholar
  52. Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Masing S, Bosk S, Ladd ME (2005a) Interventional MR angiography with no strings attached: wireless active catheter visualization. Magn Reson Med 53(2):446–455 PubMedCrossRefGoogle Scholar
  53. Quick HH, Zenge MO, Kuehl H, Kaiser GM, Aker S, Eggebrecht H, Massing S, Ladd ME (2005b) Wireless active catheter visualization: passive decoupling methods and their impact on catheter visibility. In: Proceedings of ISMRM, p 2164Google Scholar
  54. Quick HH, Kahlert P, Eggebrecht H, Kaiser GM, Parohl N, Albert J, Schaefer L, McDougall I, Decker B, Erbel R, Ladd ME (2011) Real-time MR-guided transarterial aortic valve implantation (TAVI): in vivo evaluation in swine. In: Proceedings of ISMRM, p 3736Google Scholar
  55. Rubin DL, Ratner AV, Young SW (1990) Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol 25:1325–1332PubMedCrossRefGoogle Scholar
  56. Schnall MD, Barlow C, Subramanian VH, Leigh JS (1986) Wireless implanted magnetic resonance probes for in vivo NMR. J Magn Reson 68:161–167Google Scholar
  57. Schurmann K, Vorwerk D, Bucker A, Neuerburg J, Grosskortenhaus S, Haage P, Piroth W, Hunter DW, Gunther RW (1999) Magnetic resonance angiography of nonferromagnetic iliac artery stents and stent-grafts: a comparative study in sheep. Cardiovasc Intervent Radiol 22:394–402PubMedCrossRefGoogle Scholar
  58. Teitelbaum GP, Bradley WG Jr, Klein BD (1988) MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents, and coils. Radiology 166:657–664PubMedGoogle Scholar
  59. Tzifa A, Krombach GA, Krämer N, Krüger S, Schütte A, von Walter M, Schaeffter T, Qureshi S, Krasemann T, Rosenthal E, Schwartz CA, Varma G, Buhl A, Kohlmeier A, Bücker A, Günther RW, Razavi R (2010) Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv 3(6):585–592PubMedCrossRefGoogle Scholar
  60. Unal O, Korosec FR, Frayne R, Strother CM, Mistretta CA (1998) A rapid 2D time-resolved variable-rate k-space sampling MR technique for passive catheter tracking during endovascular procedures. Magn Reson Med 40:356–362PubMedCrossRefGoogle Scholar
  61. Unal O, Li J, Cheng W, Yu H, Strother CM (2006) MR-visible coatings for endovascular device visualization. J Magn Reson Imaging 23:763–769PubMedCrossRefGoogle Scholar
  62. Weiss S, Eggers H, Schaeffter T (2001) MR-controlled fast optical switching of a resonant circuit mounted to the tip of a clinical catheter. In: Proceedings of the 9th annual meeting of the ISMRM, Glasgow, p 544Google Scholar
  63. Weiss S, Kuehne T, Brinkert F, Krombach G, Katoh M, Schaeffter T, Guenther RW, Buecker A (2004) In vivo safe catheter visualization and slice tracking using an optically detunable resonant marker. Magn Reson Med 52:860–868PubMedCrossRefGoogle Scholar
  64. Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B (2005) Transmission line for improved RF safety of interventional devices. Magn Reson Med 54:182–189PubMedCrossRefGoogle Scholar
  65. Weiss S, Wirtz D, David B, Krueger S, Lips O, Caulfield D, Pedersen SF, Bostock J, Razavi R, Schaeffter T (2011) In vivo evaluation and proof of radiofrequency safety of a novel diagnostic MR-electrophysiology catheter. Magn Reson Med 65(3):770–777PubMedCrossRefGoogle Scholar
  66. Wildermuth S, Debatin JF, Leung DA, Dumoulin CL, Darrow RD, Uhlschmid G, Hofmann E, Thyregod J, von Schulthess GK (1997) MR imaging-guided intravascular procedures: initial demonstration in a pig model. Radiology 202:578–583PubMedGoogle Scholar
  67. Wildermuth S, Dumoulin CL, Pfammatter T, Maier SE, Hofmann E, Debatin JF (1998) MR-guided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality. Cardiovasc Intervent Radiol 21:404–410PubMedCrossRefGoogle Scholar
  68. Wirth ED 3rd, Mareci TH, Beck BL, Fitzsimmons JR, Reier PJ (1993) A comparison of an inductively coupled implanted coil with optimized surface coils for in vivo NMR imaging of the spinal cord. Magn Reson Med 30:626–633PubMedCrossRefGoogle Scholar
  69. Wong EY, Zhang Q, Duerk JL, Lewin JS, Wendt M (2000) An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging 12:632–638PubMedCrossRefGoogle Scholar
  70. Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL (2001) A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging 14:56–62PubMedCrossRefGoogle Scholar
  71. Zuehlsdorff S, Umathum R, Volz S, Hallscheidt P, Fink C, Semmler W, Bock M (2004) MR coil design for simultaneous tip tracking and curvature delineation of a catheter. Magn Reson Med 52:214–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Institute of Medical PhysicsFriedrich Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations