Coronary Artery Diseases

Part of the Medical Radiology book series (MEDRAD)


Although in recent years the image quality, volume coverage, acquisition speed and contrast of coronary magnetic resonance angiography (MRA) have been substantially improved, a technique that merely allows direct visualization of the coronary arteries can be considered a controversial topic. In the following chapter this technique is discussed, stressing the often difficult procedure of acquiring motion-free images, but also the difficulties in of visualizing a diseased artery and the lack of a functional assessment of the severity of ischemic heart disease. Its role against a more functional MRI approach or coronary multislice computed tomography (MSCT) angiography is looked upon and several indications that seem useful in clinical practice are discussed.


Magnetic Resonance Angiography Kawasaki Disease Right Coronary Artery Coronary Artery Aneurysm Myocardial Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463PubMedGoogle Scholar
  2. Angelini P (1989) Normal and anomalous coronary arteries: definitions and classification. Am Heart J 117:418–434PubMedCrossRefGoogle Scholar
  3. Anné W, Bogaert J, Van de Werf F (2000) A case report of a patient with a large aneurysmatic coronary artery fistula. Acta Cardiol 55:307–310PubMedCrossRefGoogle Scholar
  4. Atkinson D, Edelman R (1991) Cineangiography of the heart in a single breathhold with a segmented TurboFLASH sequence. Radiology 178:359–362Google Scholar
  5. Aurigemma GP, Reichek N, Axel L, Schiebler M, Harris C, Kressel HY (1989) Non-invasive determination of coronary artery bypass graft patency by cine magnetic resonance imaging. Circulation 80:1595–1602PubMedCrossRefGoogle Scholar
  6. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease: report of the Ad Hoc committee for grading of coronary artery disease, Council in cardiovascular surgery, American heart association. Circulation 51:5–40PubMedGoogle Scholar
  7. Bogaert J, Duerinckx A (1995) Appearance of the normal pericardium on coronary MR angiograms. J Magn Reson 5:579–587Google Scholar
  8. Bogaert J, Kuzo S, Dymarkowski S, Becker R, Piessens J, Rademakers FE (2003) Coronary artery imaging using real-time navigator 3D Turbo-field-echo MR coronary angiography technique. Initial experience. Radiology 226:707–716PubMedCrossRefGoogle Scholar
  9. Börnert P, Jensen D (1995) Coronary artery imaging at 0.5T using segmented 3D echo planar imaging. Magn Reson Med 34:779–785PubMedCrossRefGoogle Scholar
  10. Börnert P, Aldefeld B, Nehrke K (2001) Improved 3D spiral imaging for coronary MR angiography. Magn Reson Med 45:172–175PubMedCrossRefGoogle Scholar
  11. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999) Improved coronary artery definition with T2-weighted free-breathing, three-dimensional coronary MRA. Circulation 99:3139–3148PubMedGoogle Scholar
  12. Botnar RM, Stuber M, Kissinger KV, Manning WJ (2000) Free-breathing 3D coronary MRA: the impact of “isotropic” image resolution. J Magn Reson Imaging 11:389–393PubMedCrossRefGoogle Scholar
  13. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG (1995) Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 33:689–696PubMedCrossRefGoogle Scholar
  14. Budoff MJ, Achenbach S, Duerinckx A (2003) Clinical utility of computed tomography and magnetic resonance techniques for non-invasive coronary angiography. J Am Coll Cardiol 42:1867–1878PubMedCrossRefGoogle Scholar
  15. Bunce NH, Pennell DJ (1999) Coronary MRA–a clinical experience in Europe. J Magn Reson Imag 10:721–727CrossRefGoogle Scholar
  16. Bunce NH, Rahman SL, Keegan J, Gatehouse PD, Lorenz CH, Pennell DJ (2001) Anomalous coronary arteries: anatomic and functional assessment by coronary and perfusion cardiovascular magnetic resonance in three sisters. J Cardiovasc Magn Reson 3:361–369PubMedCrossRefGoogle Scholar
  17. Bunce NH, Lorenz CH, John AS, Lesser JR, Mohiaddin RH, Pennell D (2003) Coronary artery bypass graft patency: assessment with true fast imaging with steady-state precession versus Gadolinium-enhanced MR angiography. Radiology 227:440–446PubMedCrossRefGoogle Scholar
  18. Carr J, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834PubMedGoogle Scholar
  19. Click RL, Holmes DR, Vliestra RE, Kosinski A, Kronmal RA (1989) Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival–a report from the coronary artery surgery study. J Am Coll Cardiol 13:531–537PubMedCrossRefGoogle Scholar
  20. Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ (1997) Prospective navigator correction of image position for coronary MR angiography. Radiology 203:733–736PubMedGoogle Scholar
  21. Davis JA, Cecchin F, Jones TK, Portman MA (2001) Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 37:593–597PubMedCrossRefGoogle Scholar
  22. Deshpande VX, Shea SM, Laub G, Simonetti OP, Finn JP, Li D (2001) 3D Magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med 46:494–502PubMedCrossRefGoogle Scholar
  23. Deshpande VS, Chung Y-C, Zhang Q, Shea SM, Li D (2003) Reduction of transient signal oscillations in true-FISP using a linear flip angle series magnetization preparation. Magn Reson Med 49:151–157PubMedCrossRefGoogle Scholar
  24. Desmet W, Vanhaecke J, Vrolix M et al (1992) Isolated single coronary artery: a review of 50000 consecutive coronary angiographies. Eur Heart J 13:1637–1640PubMedGoogle Scholar
  25. Doyle M, Scheidegger MB, De Graaf RG, Vermeulen J, Pohost GM (1993) Coronary artery imaging in multiple 1-sec breath holds. Magn Reson Imaging 11:3–6PubMedCrossRefGoogle Scholar
  26. Du YP, Parker DL, Davis WL et al (1994) Reduction of partial-volume artefacts with zero-filling interpolation in three-dimensional MR angiography. J Magn Reson Imaging 4:733–741PubMedCrossRefGoogle Scholar
  27. Duerinckx AJ, Urman M (1994) Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 193:731–738PubMedGoogle Scholar
  28. Duerinckx AJ, Bogaert J, Jiang H, Lewis BS (1995) Anomalous origin of the left coronary artery: diagnosis by coronary MR angiography. Am J Roentgenol 164:1095–1096Google Scholar
  29. Duerinckx AJ, Atkinson D, Hurwitz R (1998) Assessment of coronary artery patency after stent placement using magnetic resonance angiography. J Magn Reson Imaging 8:896–902PubMedCrossRefGoogle Scholar
  30. Edelman R, Manning W, Burstein D, Paulin S (1991) Coronary arteries: breath-hold MR angiography. Radiology 181:641–643PubMedGoogle Scholar
  31. Etienne A, Botnar RM, van Muiswinkel AMC, Boesiger P, Manning WJ, Stuber M (2002) “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48:658–666PubMedCrossRefGoogle Scholar
  32. Fayad ZA, Fuster V, Fallon JT et al (2000) Non-invasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510PubMedGoogle Scholar
  33. Ferrigno M, Hickey DD, Liner MH, Lundgren CEG (1986) Cardiac performance in humans during breath-holding. J Appl Physiol 60:1871–1877PubMedGoogle Scholar
  34. Flacke S, Setser RM, Barger P et al (2000) Coronary aneurysms in Kawasaki’s disease detected by magnetic resonance coronary angiography. Circulation 101:E516–E517Google Scholar
  35. Fleckenstein JL, Archer BT, Barker BA, Vaughan JT, Parkey RW, Peshock RM (1991) Fast short-tau inversion-recovery MR imaging. Radiology 179:499–504PubMedGoogle Scholar
  36. Foo TKF, Ho VB, Hood MN (2000) Vessel tracking: prospective adjustment of section-selective MR angiographic locations for improved coronary artery visualization over the cardiac cycle. Radiology 214:283–289PubMedGoogle Scholar
  37. Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. Circulation 93:660–666PubMedGoogle Scholar
  38. Garg N, Tewari S, Kapoor A, Gupta DK, Sinha N (2000) Primary congenital anomalies of the coronary arteries: a coronary arteriographic study. Int J Cardiol 74:39–46PubMedCrossRefGoogle Scholar
  39. Gerber TC, Fasseas P, Lennon RJ et al (2003a) Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 42:1295–1298PubMedCrossRefGoogle Scholar
  40. Gerber TC, Kuzo RS, Lane GE et al (2003b) Image quality in a standardized algorithm for minimally invasive coronary angiography with multi-slice spiral computed tomography. J Comput Assist Tomogr 27:62–69PubMedCrossRefGoogle Scholar
  41. Giorgi B, Dymarkowski S, Maes F, Kouwenhoven M, Bogaert J (2002) Improved visualization of coronary arteries using a new three-dimensional submillimeter MR coronary angiography sequence with balanced gradients. Am J Roentgenol 179:901–910Google Scholar
  42. Goldfarb JW, Edelman RR (1998) Coronary arteries: breath-hold gadolinium-enhanced, three-dimensional MR angiography. Radiology 206:830–834PubMedGoogle Scholar
  43. Gomes A, Lois J, Drinkwater D, Corday S (1987) Coronary artery bypass grafts: visualization with MR imaging. Radiology 162:175–179PubMedGoogle Scholar
  44. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94PubMedCrossRefGoogle Scholar
  45. Greil GF, Stuber M, Botnar RM et al (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911PubMedCrossRefGoogle Scholar
  46. Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 4:341–344CrossRefGoogle Scholar
  47. Hofman MBM, Visser FC, van Rossum AC, Vink GQM, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33:778–784PubMedCrossRefGoogle Scholar
  48. Hofman MB, van Rossum AC, Sprenger M, Westerhof N (1996) Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med 35:521–531PubMedCrossRefGoogle Scholar
  49. Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implication for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576PubMedCrossRefGoogle Scholar
  50. Hofman MB, Henson RE, Kovacs SJ et al (1999) Blood pool contrast agent strongly improves 3D magnetic resonance coronary angiography using an inversion prepulse. Magn Reson Med 41:360–367PubMedCrossRefGoogle Scholar
  51. Holsinger AE, Riederer SJ (1990) The importance of phase encoding order in ultra-short TR snapshot MR imaging. Magn Reson Med 16:481–488PubMedCrossRefGoogle Scholar
  52. Huber A, Nikolaou K, Gonschior P, Knez A, Stehling M, Reiser M (1999) Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: results from healthy volunteers and patients with proximal coronary artery stenoses. Am J Roentgenol 173:95–101Google Scholar
  53. Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E (2000) Coronary arterial stents: safety and artifacts during MR imaging. Radiology 216:781–787PubMedGoogle Scholar
  54. Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E (2005) A new approach for rapid assessment of the cardiac rest period for coronary MRA. J Cardiovasc Magn Reson 7(2):395–399PubMedCrossRefGoogle Scholar
  55. Johansson LO, Fischer SE, Lorenz CH (1999) Benefit of T1 reduction for magnetic resonance coronary angiography: a numerical simulation and phantom study. J Magn Reson Imaging 9:552–556PubMedCrossRefGoogle Scholar
  56. Joyce JD, Schulman DS, Lasorda D et al (1994) Intracoronary Doppler guide wire versus stress single-photon emission computed tomography thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 24:940–947CrossRefGoogle Scholar
  57. Kalden P, Kreitner KF, Wittlinger T et al (1999) Assessment of coronary artery bypass grafts: value of different breath-hold MR imaging techniques. Am J Roentgenol 172:1359–1364Google Scholar
  58. Keegan J, Gatehouse PD, Mohiaddin RH, Yang HZ, Firmin DN (2004) Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J Magn Reson Imaging 19:40–49PubMedCrossRefGoogle Scholar
  59. Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM (2001) Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging 14:383–390PubMedCrossRefGoogle Scholar
  60. Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839PubMedCrossRefGoogle Scholar
  61. Langerak SE, Vliegen HW, de Roos A et al (2002) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105:328–333PubMedCrossRefGoogle Scholar
  62. Langerak SE, Vliegen JW, Zwinderman AH et al (2003a) Vein graft function improvement after percutaneous intervention: evaluation with MR flow mapping. Radiology 228:834–841PubMedCrossRefGoogle Scholar
  63. Langerak SE, Vliegen HW, Jukema JW et al (2003b) Value of magnetic resonance imaging for the non-invasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508PubMedCrossRefGoogle Scholar
  64. Langreck H, Schnackenburg B, Nehrke K, Boernert P, Wahl A, Paetsch I, Bornstedt A, Fleck E, Nagel E (2005) MR coronary artery imaging with 3D motion adapted gating (MAG) in comparison to a standard prospective navigator technique. J Cardiovasc Magn Reson 7(5):793–797PubMedCrossRefGoogle Scholar
  65. Lethimonnier F, Furber A, Morel O et al (1999) Three-dimensional coronary artery MR imaging using prospective real-time respiratory navigator and linear phase shift processing: comparison with conventional coronary angiography. Magn Reson Imaging 17:1111–1120PubMedCrossRefGoogle Scholar
  66. Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, Finn JP (2001a) Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume targeted breath-hold MR angiography. Radiology 219:270–277PubMedGoogle Scholar
  67. Li D, Zheng J, Weinmann H-J (2001b) Contrast-enhanced MR imaging of coronary arteries: comparison of intra- and extravascular contrast agents in Swine. Radiology 218:670–678PubMedGoogle Scholar
  68. Lorenz CH, Johansson LO (1999) Contrast-enhanced coronary MRA. J Magn Reson Imaging 10:703–708PubMedCrossRefGoogle Scholar
  69. Malik IS, Harare O Al-Nahhas A, Beatt K, Mason J (2003) Takayasu’s arteritis: management of left main stem stenosis. Heart 89:e9–e12PubMedCrossRefGoogle Scholar
  70. Manke D, Börnert P, Nehrke K, Nagel E, Dössel O (2001) Accelerated coronary MRA by simultaneous acquisition of multiple 3D stacks. J Magn Reson Imaging 14:478–483PubMedCrossRefGoogle Scholar
  71. Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87:94–104PubMedGoogle Scholar
  72. Marcus JT, Smeenk HG, Kuijer JPA, Van der Geest RJ, Heethaar RM, Van Rossum AC (1999) Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr 4:567–576CrossRefGoogle Scholar
  73. McConnell MV, Khasgiwala VC, Savord BJ et al (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152PubMedCrossRefGoogle Scholar
  74. Meyer CH, Pauly JM, Macovski A, Mishimura DG (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15:287–304PubMedCrossRefGoogle Scholar
  75. Mohiaddin RH, Bogren HG, Lazim F et al (1996) Magnetic resonance coronary angiography in heart transplant recipients. Coronary Artery Dis 7:591–597CrossRefGoogle Scholar
  76. Molinari G, Sardanelli F, Zandrino F et al (2000) Coronary aneurysms and stenosis detected with magnetic resonance coronary angiography in a patient with Kawasaki disease. Ital Heart J 1:368–371PubMedGoogle Scholar
  77. Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E (1999) Non-invasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 41:544–549PubMedCrossRefGoogle Scholar
  78. Nagel E, Thouet T, Klein C et al (2003) Non-invasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients with stent deployment. Circulation 107:1738–1743PubMedCrossRefGoogle Scholar
  79. Nassenstein K, Waltering KU, Kelle S, Schlosser T, Breuckmann F, Maderwald S, Hunold P, Nagel E, Barkhausen J (2008) Magnetic resonance coronary angiography with Vasovist: in vivo T1 estimation to improve image quality of navigator and breath-hold techniques. Eur Radiol 18(1):103–109PubMedCrossRefGoogle Scholar
  80. Nassenstein K, Breuckmann F, Hunold P, Barkhausen J, Schlosser T (2009) (2009) Magnetic resonance coronary angiography: comparison between a Gd-BOPTA- and a Gd-DTPA-enhanced spoiled gradient-echo sequence and a non-contrast-enhanced steady-state free-precession sequence. Acta Radiol 50(4):406–411PubMedCrossRefGoogle Scholar
  81. Nitatori T, Hanaoka H, Yoshino A et al (1995) Clinical application of magnetic resonance angiography for coronary arteries: correlation with conventional angiography and evaluation of imaging time. Nippon Acta Radiol 55:670–676PubMedGoogle Scholar
  82. Nunoda S, Machida H, Sekikawa A, Shitakura K, Okajima K, Kubo Y, Ueno E, Otsuka K (2010) Evaluation of cardiac allograft vasculopathy by multidetector computed tomography and whole-heart magnetic resonance coronary angiography. Circ J 74(5):946–953PubMedCrossRefGoogle Scholar
  83. Pannu HK, Flohr TG, Corl FM, Fishman EK (2003) Current concepts in multi-detector row CT evaluation of the coronary arteries: principles, techniques, and anatomy. RadioGraphics 23:S111–S125PubMedCrossRefGoogle Scholar
  84. Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. Am J Roentgenol 148:665–670Google Scholar
  85. Pelliccia A (2001) Congenital coronary artery anomalies in young patients. New perspectives for timely identification. J Am Coll Cardiol 37:598–600PubMedCrossRefGoogle Scholar
  86. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB (1993) Magnetic resonance imaging of the coronary arteries: technique and preliminary results. Br Heart J 70:315–326PubMedCrossRefGoogle Scholar
  87. Pepine C, Holmes DR, Block PC et al (1996) ACC expert consens document. Coronary artery stents. J Am Coll Cardiol 28:782–794PubMedGoogle Scholar
  88. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol–initial results. Radiology 225:300–307PubMedCrossRefGoogle Scholar
  89. Plein S, Jones TR, Ridgway JP, Sivananthan MU (2003) Three-dimensional coronary MR angiography performed with subject-specific cardiac acquisition windows and motion-adapted respiratory gating. Am J Roentgenol 180:505–512Google Scholar
  90. Post JC, van Rossum AC, Hofman MBM, Valk J, Visser CA (1996) Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional contrast coronary angiography. Am J Roentgenol 166:426–433Google Scholar
  91. Post JC, van Rossum AC, Hofman MB, de Cock CC, Valk J, Visser CA (1997) Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 18:426–433PubMedGoogle Scholar
  92. Pouleur AC, le Polain de Waroux JB, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging 1(2):114–121PubMedCrossRefGoogle Scholar
  93. Prakken NH, Cramer MJ, Olimulder MA, Agostoni P, Mali WP, Velthuis BK (2010) Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography. Int J Cardiovasc Imaging 26(6):701–710PubMedCrossRefGoogle Scholar
  94. Prêtre R, Tamisier D, Bonhoeffer P et al (2001) Results of the arterial switch operation in neonates with transposed great arteries. Lancet 35:1826–1830CrossRefGoogle Scholar
  95. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164PubMedGoogle Scholar
  96. Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3:1–9PubMedCrossRefGoogle Scholar
  97. Reddy KS, Yusuf S (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation 97(6):596–601PubMedGoogle Scholar
  98. Regenfus M, Ropers D, Achenbach S et al (2000) Non-invasive detection of coronary artery stenosis using breath-hold enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36:44–50PubMedCrossRefGoogle Scholar
  99. Regenfus M, Ropers D, Achenbach S et al (2002) Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol 90:725–730PubMedCrossRefGoogle Scholar
  100. Regenfus M, Roper D, Achenbach S et al (2003) Diagnostic value of maximum intensity projections versus source images for assessment of contrast-enhanced tree-dimensional breath-hold magnetic resonance coronary angiography. Invest Radiol 38:200–206PubMedGoogle Scholar
  101. Saito Y, Sakuma H, Shibata M et al (2001) Assessment of coronary flow velocity reserve using fast velocity-encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Magn Reson 3:209–214PubMedCrossRefGoogle Scholar
  102. Sakuma H, Kawada N, Takeda K, Higgins CB (1999) MR measurement of coronary blood flow. J Magn Reson Imaging 10:728–733PubMedCrossRefGoogle Scholar
  103. Sandstede JJ, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D (1999) Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography. Am J Roentgenol 172:135–139Google Scholar
  104. Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214:808–814PubMedGoogle Scholar
  105. Sardanelli F, Zandrino F, Molinari G, Iozzelli A, Balbi M, Barsotti A (2002) MR evaluation of coronary stents with navigator echo and breath-hold cine gradient-echo techniques. Eur Radiol 12:193–200PubMedCrossRefGoogle Scholar
  106. Scheidegger MB, Müller R, Boesiger P (1994) Magnetic resonance angiography: methods and its applications to the coronary arteries. Technol Health Care 2:255–265PubMedGoogle Scholar
  107. Scheidegger MB, Stuber M, Boesiger P, Hess OM (1996) Coronary artery imaging by magnetic resonance. Herz 21:90–96PubMedGoogle Scholar
  108. Schroeder AP, Houlind K, Pedersen AM, Thuesen L, Nielsen TT, Egeblad H (2000) Magnetic resonance imaging seems safe in patients with intracoronary stents. J Cardiovasc Magn Reson 2:43–49PubMedCrossRefGoogle Scholar
  109. Shea SM, Deshpande VS, Chung Y-C, Li D (2002) Three-dimensional true-FISP imaging of the coronary arteries: improved contrast with T2-preparation. J Magn Reson Imaging 15:597–602PubMedCrossRefGoogle Scholar
  110. Sommer T, Hofer U, Hackenbroch M et al (2002) Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Röfo Fortschr Röntgenstr 174:459–466CrossRefGoogle Scholar
  111. Spuentrup E, Manning WJ, Botnar RM, Kissinger KV, Stuber M (2002) Impact of navigator timing on free-breathing submillimeter 3D coronary magnetic resonance angiography. Magn Reson Med 47:196–201PubMedCrossRefGoogle Scholar
  112. Spuentrup E, Katoh M, Stuber M, Botnar R, Schaeffter T, Buecker A, Gunther RW (2003) Coronary MR imaging using free-breathing 3D steady-state free precession with radial κ-space sampling. Röfo Fortschr Röntgenstr 175:1330–1334CrossRefGoogle Scholar
  113. Stuber M, Botnar RM, Danias PG et al (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524–531PubMedCrossRefGoogle Scholar
  114. Stuber M, Botnar RM, Fischer SE et al (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429PubMedCrossRefGoogle Scholar
  115. Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 3:377–385PubMedCrossRefGoogle Scholar
  116. Tangcharoen T, Jahnke C, Koehler U, Schnackenburg B, Klein C, Fleck E, Nagel E (2008) Impact of heart rate variability in patients with normal sinus rhythm on image quality in coronary magnetic angiography. J Magn Reson Imaging 28(1):74–79PubMedCrossRefGoogle Scholar
  117. Taylor AM, Dymarkowski S, Haemaekers P et al (2005) Magnetic resonance coronary angiography and late-enhancement myocardial imaging in children with arterial switch operation for transposition of the great arteries. Radiology 234(2):542–547PubMedCrossRefGoogle Scholar
  118. Taylor AM, Jhooti P, Wiesmann F et al (1997) MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging 7:629–636PubMedCrossRefGoogle Scholar
  119. Taylor AM, Panting JR, Keegan J et al (1999) Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 9:220–227PubMedCrossRefGoogle Scholar
  120. Taylor AM, Keegan J, Jhooti P, Gatehouse PD, Firmin DN, Pennell DJ (2000a) A comparison between segmented κ-space FLASH and interleaved spiral MR coronary angiography sequences. J Magn Reson Imaging 11:394–400PubMedCrossRefGoogle Scholar
  121. Taylor AM, Thorne SA, Rubens MB et al (2000b) Coronary artery imaging in grown up congenital heart disease. Complementary role of magnetic resonance and x-ray coronary angiography. Circulation 101:1670–1678PubMedGoogle Scholar
  122. Van den Brink J, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27PubMedCrossRefGoogle Scholar
  123. van Geuns RJM, de Bruin HG, Rensing Rensing BJWM et al (1999) Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique. Heart 82:515–519PubMedGoogle Scholar
  124. van Ooijen PMA, van Geuns RJM, Rensing BJWM, Bongaerts AHH, de Feyter PJ, Oudkerk (2003) Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. Am J Roentgenol 180:223–226Google Scholar
  125. van Rossum AC, Galjee MA, Post JC, Visser CA (1997) A practical approach to MRI of coronary artery bypass graft patency and flow. Int J Cardiac Imaging 13:199–204CrossRefGoogle Scholar
  126. Vick GW-III, Muthupillai R, Su JT, Kovalchin JP, Chung T (2003) Magnetic resonance angiography of coronary arteries and peripheral arteries in infants and young children with Kawasaki disease. J Am Coll Cardiol 495AGoogle Scholar
  127. Vitiello R, McCrindle BW, Nykanen D et al (1998) Complications associated with pediatric cardiac catheterization. J Am Coll Cardiol 32:1433–1440PubMedCrossRefGoogle Scholar
  128. Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O (1997) Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass graft. Am J Roentgenol 168:1073–1080Google Scholar
  129. Walker F, Webb G (2001) Congenital coronary artery anomalies: the adult perspective. Cor Art Dis 12:599–604CrossRefGoogle Scholar
  130. Wang Y, Ehman RL (2000) Retrospective adaptive motion correction of navigator-gated 3D coronary MR angiography. J Magn Reson Imaging 11:208–214PubMedCrossRefGoogle Scholar
  131. Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL (1996) Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198:55–60PubMedGoogle Scholar
  132. Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758PubMedGoogle Scholar
  133. Wang Y, Watts R, Mitchell IR et al (2001) Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning–Initial results. Radiology 218:580–585PubMedGoogle Scholar
  134. Weber C, Steiner P, Sinkus R, Dill T, Börnert P, Adam G (2002) Correlation of 3D MR coronary angiography with selective coronary angiography: feasibility of the motion-adapted gating technique. Eur Rad 122:718–726CrossRefGoogle Scholar
  135. Weissler AM, Harris WS, Schoenfeld CD (1968) Systolic time intervals in heart failure in man. Circulation 37:149–159PubMedGoogle Scholar
  136. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary angiogram predict the physiological importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  137. Wielopolski PA, Manning WJ, Edelman RE (1995) Single breath-hold volumetric imaging of the heart using magnetization-prepared 3-dimensional segmented echo-planar imaging. J Magn Res Imaging 5:403–409CrossRefGoogle Scholar
  138. Wielopolski PA, van Geuns RJM, de Feyter PJ, Oudkerk M (1998) Breath-hold coronary MR angiography with volume targeted imaging. Radiology 209:209–219PubMedGoogle Scholar
  139. Wielopolski PA, van Geuns RJM, de Feyter PJ, Oudkerk M (2000) Coronary arteries. Review article. Eur Radiol 10:12–35PubMedCrossRefGoogle Scholar
  140. Wintersperger BJ, Engelmann MG, Von Smekal A et al (1998) Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR angiography–value of a non-electrocardiographically triggered technique. Radiology 208:345–351PubMedGoogle Scholar
  141. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144PubMedCrossRefGoogle Scholar
  142. Wu YW, Tadamura E, Yamamuro M, Kanao S, Nakayama K, Togashi K (2007) Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: the importance of systolic imaging in subjects with high heart rates. Eur J Radiol 61(1):91–96PubMedCrossRefGoogle Scholar
  143. Yoshino H, Nitatori T, Kachi E et al (1997) Directed proximal magnetic resonance coronary angiography compared with conventional contrast coronary angiography. Am J Cardiol 80:514–518PubMedCrossRefGoogle Scholar
  144. Zheng J, Li D, Cavagna FM et al (2001) Contrast-enhanced coronary MR angiography: relationship between coronary artery delineation and blood T1. J Magn Reson Imaging 14:348–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of RadiologyGasthuisberg Universitair ZiekenhuisLeuvenBelgium
  2. 2.Cardiothoracic UnitInstitute of Child Health and Great Ormond Street Hospital for ChildrenLondonUK

Personalised recommendations