MRI-Guided RF Ablation in the Liver

  • Hansjörg Rempp
  • Rüdiger Hoffmann
  • Stephan Clasen
  • Philippe L. Pereira
Part of the Medical Radiology book series (MEDRAD)


Depending on the magnetic resonance (MR) scanner used, the entire thermoablative therapy can be planned, guided, and controlled by MR imaging. Use of MR imaging is motivated by its high soft-tissue contrast, the possibility to guide the needle placement using fluoroscopic sequences with freely selectable slice angulations, the good visualization of small tumors and of delicate structures adjacent to the target tissue without use of contrast medium, and above all, the precise differentiation between tumor tissue and the induced coagulation, based on different MR signal intensities. Therefore, MR guidance can improve safety and efficacy during percutaneous thermal ablation procedures. Different MR scanner types and MR-compatible material are presented in this chapter. Therapy planning and the sequences used for needle placement are discussed. During the ablation, different ways of monitoring therapy, including standard T1- and T2-weighted sequences, diffusion-weighted imaging, and temperature mapping, can be applied. After intervention, a dynamic liver examination using contrast medium may help to delineate the ablation zone and to exclude remaining tumor tissue and complications such as active bleeding or hematomas. A structured follow-up of the patients is necessary to check for local tumor recurrence and new tumor manifestations. This chapter summarizes the role of MR guidance for thermoablative therapies of liver tumors.


Ablation Zone Magnetic Resonance Scanner Magnetic Resonance System Coagulation Zone Applicator Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aschoff AJ, Rafie N, Jesberger JA, Duerk JL, Lewin JS (2000) Thermal lesion conspicuity following interstitial radiofrequency thermal tumor ablation in humans: a comparison of STIR, turbo spin-echo T2-weighted, and contrast-enhanced T1-weighted MR images at 0.2 T. J Magn Reson Imaging 12:584–589PubMedCrossRefGoogle Scholar
  2. Assumpcao L, Choti M, Pawlik TM, Gecshwind JF, Kamel IR (2009) Functional MR imaging as a new paradigm for image guidance. Abdom Imaging 34(6):675–685PubMedCrossRefGoogle Scholar
  3. Aube C, Schmidt D, Brieger J, Schenk M, Helmberger T, Koenig CW, Schick F et al (2004) Magnetic resonance imaging characteristics of six radiofrequency electrodes in a phantom study. J Vasc Interv Radiol 15(4):385–392PubMedCrossRefGoogle Scholar
  4. Boaz TL, Lewin JS, Chung YC, Duerk JL, Clampitt ME, Haaga JR (1998) MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging 8(1):64–69PubMedCrossRefGoogle Scholar
  5. Boss A, Martirosian P, Schraml C, Clasen S, Fenchel M, Anastasiadis A, Claussen CD, Pereira PL, Schick F (2006) Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas. Eur Radiol 16(6):1226–1236PubMedCrossRefGoogle Scholar
  6. Braga L, Semelka RC (2005) Magnetic resonance imaging features of focal liver lesions after intervention. Top Magn Reson Imaging 16(1):99–106PubMedCrossRefGoogle Scholar
  7. Cernicanu A, Lepetit-Coiffe M, Roland J, Becker CD, Terraz S (2008) Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies. NMR Biomed 21(8):849–858PubMedCrossRefGoogle Scholar
  8. Choi D, Lim HK, Kim SH, Lee WJ, Jang HJ, Lee JY, Paik SW et al (2000) Hepatocellular carcinoma treated with percutaneous radio-frequency ablation: usefulness of power Doppler US with a microbubble contrast agent in evaluating therapeutic response-preliminary results. Radiology 217(2):558–563PubMedGoogle Scholar
  9. Clasen S, Pereira PL (2008) Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging 27(2):421–433PubMedCrossRefGoogle Scholar
  10. Clasen S, Schmidt D, Boss A, Dietz K, Krober SM, Claussen CD, Pereira PL (2006) Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling. Radiology 238(3):881–890PubMedCrossRefGoogle Scholar
  11. Clasen S, Boss A, Schmidt D, Schraml C, Fritz J, Schick F, Claussen CD, Pereira PL (2007) MR-guided radiofrequency ablation in a 0.2-T open MR system: technical success and technique effectiveness in 100 liver tumors. J Magn Reson Imaging 26(4):1043–1052PubMedCrossRefGoogle Scholar
  12. Cline HE, Hynynen K, Schneider E, Hardy CJ, Maier SE, Watkins RD, Jolesz FA (1996) Simultaneous magnetic resonance phase and magnitude temperature maps in muscle. Magn Reson Med 35(3):309–315PubMedCrossRefGoogle Scholar
  13. Daanen V, Coste E, Sergent G, Godart F, Vasseur C, Rousseau J (2000) Accurate localization of needle entry point in interventional MRI. J Magn Reson Imaging 12(4):645–649PubMedCrossRefGoogle Scholar
  14. Dromain C, de Baere T, Elias D, Kuoch V, Ducreux M, Boige V, Petrow P et al (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223(1):255–262PubMedCrossRefGoogle Scholar
  15. Duerk JL, Lewin JS, Wendt M, Petersilge C (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at.2 T. J Magn Reson Imaging 8:203–208PubMedCrossRefGoogle Scholar
  16. Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part II. J Vasc Interv Radiol 12(10):1135–1148PubMedCrossRefGoogle Scholar
  17. Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanagh PV, Safran H (2000) Percutaneous radiofrequency ablation of malignancies in the lung. Am J Roentgenol 174(1):57–59Google Scholar
  18. Gaffke G, Gebauer B, Knollmann FD (2006) Use of semiflexible applicators for radiofrequency ablation of liver tumors. Cardiovasc Intervent Radiol 29:270–275PubMedCrossRefGoogle Scholar
  19. Germain D, Chevallier P, Laurent A, Saint-Jalmes H (2001) MR monitoring of tumour thermal therapy. MAGMA 13(1):47–59PubMedGoogle Scholar
  20. Germain D, Vahala E, Ehnholm GJ, Vaara T, Ylihautala M, Savart M, Laurent A et al (2002) MR temperature measurement in liver tissue at 0.23 T with steady-state free precession sequence. Magn Reson Med 47(5):940–947PubMedCrossRefGoogle Scholar
  21. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR (2003) Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology 226(2):417–424PubMedCrossRefGoogle Scholar
  22. Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J Vasc Intervent Radiol 12:1021–1032CrossRefGoogle Scholar
  23. Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME (1999) Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 10(7):907–916PubMedCrossRefGoogle Scholar
  24. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais DA et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(7 Suppl):S377–S390PubMedCrossRefGoogle Scholar
  25. Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39:198–203PubMedCrossRefGoogle Scholar
  26. Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 42(6):1061–1071PubMedCrossRefGoogle Scholar
  27. Hindmann JC (1966) Proton resonance shift of water in the gas and liquid state. J Chem Phys 44:4582–4592CrossRefGoogle Scholar
  28. Huppert PE, Trubenbach J, Schick F, Pereira PL, Konig C, Claussen CD (2000) MRI-guided percutaneous radiofrequency ablation of hepatic neoplasms—first technical and clinical experiences. Rofo 172:692–700PubMedCrossRefGoogle Scholar
  29. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823PubMedCrossRefGoogle Scholar
  30. Kelekis AD, Terraz S, Roggan A, Terrier F, Majno P, Mentha G, Roth A et al (2003) Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 13(5):1100–1105PubMedGoogle Scholar
  31. Kettenbach J, Köstler W, Rücklinger E, Gustorff B, Hüpfl M, Wolf F, Peer K et al (2003) Percutaneous saline-enhanced radiofrequency ablation of unresectable hepatic tumors: initial experience in 26 patients. Am J Roentgenol 180:1537–1545Google Scholar
  32. Kierans AS, Elazzazi M, Braga L, Leonardou P, Gerber DA, Burke C, Qureshi W et al (2010) Thermoablative treatments for malignant liver lesions: 10-year experience of MRI appearances of treatment response. Am J Roentgenol 194(2):523–529CrossRefGoogle Scholar
  33. Kudo M (2010) Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology 78(1):113–124PubMedCrossRefGoogle Scholar
  34. Lazebnik RS, Breen MS, Fitzmaurice M, Nour SG, Lewin JS, Wilson DL (2003) Radio-frequency-induced thermal lesions: subacute magnetic resonance appearance and histological correlation. J Magn Reson Imaging 18(4):487–495PubMedCrossRefGoogle Scholar
  35. Lee VS, Lavelle MT, Rofsky NM, Laub G, Thomasson D, Krinsky GA, Weinreb JC (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215(2):365–372PubMedGoogle Scholar
  36. Lee JD, Lee JM, Kim SW, Kim CS, Mun WS (2001) MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2(3):151–158PubMedCrossRefGoogle Scholar
  37. Lencioni R, Crocetti L, Cioni R, Mussi A, Fontanini G, Ambrogi M, Franchini C et al (2004) Radiofrequency ablation of lung malignancies: where do we stand? Cardiovasc Intervent Radiol 27(6):581–590PubMedCrossRefGoogle Scholar
  38. Lepetit-Coiffe M, Laumonier H, Seror O, Quesson B, Sesay MB, Moonen CT, Grenier N et al (2010) Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 20(1):193–201PubMedCrossRefGoogle Scholar
  39. Lewin JS, Connell CF, Duerk JL, Chung YC, Clampitt ME, Spisak J, Gazelle GS et al (1998a) Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors : clinical trial for evaluation of safety and feasibility. J Magn Reson Imaging 8(1):40–47CrossRefGoogle Scholar
  40. Lewin JS, Petersilge CA, Hatem SF et al (1998b) Interactive MR imaging guided biopsy and aspiration with a modified clinical C-arm system. Am J Roentgenol 170:1593–1601Google Scholar
  41. Lewin JS, Nour SG, Connell CF, Sulman A, Duerk JL, Resnick MI, Haaga JR (2004) Phase II clinical trial of interactive MR imaging-guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology 232(3):835–845PubMedCrossRefGoogle Scholar
  42. Leyendecker JR, Dodd GD 3rd, Halff GA, McCoy VA, Napier DH, Hubbard LG, Chintapalli KN et al (2002) Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. Am J Roentgenol 178(5):1147–1151Google Scholar
  43. Mahnken AH, Buecker A, Spuentrup E, Krombach GA, Henzler D, Gunther RW, Tacke J (2004) MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results. J Magn Reson Imaging 19(3):342–348PubMedCrossRefGoogle Scholar
  44. McDannold N, Jolesz F (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11:191–202PubMedCrossRefGoogle Scholar
  45. Merkle EM, Boll DT, Boaz T, Duerk JL, Chung YC, Jacobs GH, Varnes ME et al (1999) MRI-guided radiofrequency thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2 T. Magn Reson Med 42(1):141–149PubMedCrossRefGoogle Scholar
  46. Motamedi D, Learch TJ, Ishimitsu DN, Motamedi K, Katz MD, Brien EW, Menendez L (2009) Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 29(7):2127–2141PubMedCrossRefGoogle Scholar
  47. Muller-Bierl B, Graf H, Lauer U, Steidle G, Schick F (2004) Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 31:579–587PubMedCrossRefGoogle Scholar
  48. Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Mimura T et al (2005) Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 4(4):175–186PubMedCrossRefGoogle Scholar
  49. Okusaka T, Okada S, Ueno H, Ikeda M, Shimada K, Yamamoto J, Kosuge T et al (2002) Satellite lesions in patients with small hepatocellular carcinoma with reference to clinicopathologic features. Cancer 95:1931–1937PubMedCrossRefGoogle Scholar
  50. Oppelt A, Graummann R, Barfuss H, Fischer H, Hartl W, Schajor W (1986) FISP—a new fast MRI sequence. Electromedica 54:15–18Google Scholar
  51. Pereira PL, Trubenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, Remy CT et al (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232(2):482–490PubMedCrossRefGoogle Scholar
  52. Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533PubMedCrossRefGoogle Scholar
  53. Rempp H, Clasen S, Boss A, Roland J, Kickhefel A, Schraml C, Claussen CD et al (2009) Prediction of cell necrosis with sequential temperature mapping after radiofrequency ablation. J Magn Reson Imaging 30(3):631–639PubMedCrossRefGoogle Scholar
  54. Rhim H, Goldberg SN, Dodd GD 3rd, Solbiati L, Lim HK, Tonolini M, Cho OK (2001) Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21:S17–S35; discussion S36-19Google Scholar
  55. Rhim H, Dodd GD 3rd, Chintapalli KN, Wood BJ, Dupuy DE, Hvizda JL, Sewell PE et al (2004) Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 24(1):41–52PubMedCrossRefGoogle Scholar
  56. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212(3):876–884PubMedGoogle Scholar
  57. Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229(1):171–175PubMedCrossRefGoogle Scholar
  58. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157PubMedCrossRefGoogle Scholar
  59. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800PubMedCrossRefGoogle Scholar
  60. Schraml C, Schwenzer NF, Clasen S, Rempp HJ, Martirosian P, Claussen CD, Pereira PL (2009) Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging 29(6):1308–1316PubMedCrossRefGoogle Scholar
  61. Schulz T, Puccini S, Schneider JP, Kahn T (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14:2212–2227PubMedCrossRefGoogle Scholar
  62. Semelka RC, Martin DR, Balci C, Lance T (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13(3):397–401PubMedCrossRefGoogle Scholar
  63. Thomas C, Wojitczyk H, Rempp H, Clasen S, Horger M, Von Lassberg C, Fritz J et al (2010a) Carbon fibre and nitinol needles for MRI-guided interventions: first in vitro and in vivo application. Eur J Radiol 79(3):353–358Google Scholar
  64. Thomas C, Springer F, Roethke M, Rempp HJ, Clasen S, Fritz J, Claussen CD, Pereira PL (2010b) In vitro assessment of needle artifacts with an interactive three-dimensional MR fluoroscopy system. J Vasc Interv Radiol. 21:375–380CrossRefGoogle Scholar
  65. Tieng QM, Vegh V, Brereton IM (2010) Globally optimal, minimum stored energy, double-doughnut superconducting magnets. Magn Reson Med 63(1):262–267PubMedGoogle Scholar
  66. Vigen KK, Jarrard J, Rieke V, Frisoli J, Daniel BL, Butts Pauly K (2006) In vivo porcine liver radiofrequency ablation with simultaneous MR temperature imaging. J Magn Reson Imaging 23(4):578–584PubMedCrossRefGoogle Scholar
  67. Yamakado K, Nakatsuka A, Akeboshi M, Takeda K (2003) Percutaneous radiofrequency ablation of liver neoplasms adjacent to the gastrointestinal tract after balloon catheter interposition. J Vasc Interv Radiol 14:1183–1186PubMedCrossRefGoogle Scholar
  68. Zagoria RJ (2004) Imaging-guided radiofrequency ablation of renal masses. Radiographics 24(1):S59–S71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hansjörg Rempp
    • 1
  • Rüdiger Hoffmann
    • 1
  • Stephan Clasen
    • 1
  • Philippe L. Pereira
    • 2
  1. 1.Department of Diagnostic and Interventional RadiologyEberhard Karls University of TübingenTübingenGermany
  2. 2.Clinic for Radiology, Minimally-Invasive Therapies and Nuclear MedicineSLK-Clinics Heilbronn GmbHHeilbronnGermany

Personalised recommendations