MRI-Guided High-Intensity Focused Ultrasound Sonication of Liver and Kidney

  • Baudouin Denis de Senneville
  • Mario Ries
  • Lambertus W. Bartels
  • Chrit T. W. Moonen
Part of the Medical Radiology book series (MEDRAD)


High-intensity focused ultrasound (HIFU) can be used to achieve a local temperature increase deep inside the human body in a noninvasive way. MRI guidance of the procedure allows in situ target definition. In addition, MRI can be used to provide continuous temperature mapping during HIFU sonication for spatial and temporal control of the heating procedure and prediction of the final lesion on the basis of the thermal dose received. Temperature mapping of mobile organs such as kidney and liver is challenging, as are real-time processing methods for feedback control of the HIFU procedure. In this chapter, we review recent technological advances in magnetic resonance (MR) temperature mapping of these organs, in motion compensation of the HIFU beam, in intercostal HIFU sonication, and in volumetric ablation and feedback control strategies. Recent preclinical studies have demonstrated the feasibility of each of these novel methods. The perspectives to translate those advances into the clinic are addressed. It can be concluded that MR-guided HIFU for ablation in liver and kidney appears feasible but requires further work on integration of technologically advanced methods.


Respiratory Cycle Uterine Fibroid Local Magnetic Field Thoracic Cage Proton Resonance Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



High-intensity focused ultrasound


Magnetic resonance


Proton resonance frequency


Unaliasing by Fourier-encoding the overlaps in the temporal dimension



This authors acknowledge support from Agence National de Recherche (project MRgHIFU-ALKT), Fondation InNaBioSanté (project ULTRAFITT), Center for Translational Molecular Medicine (project VOLTA), Ligue Nationale Contre le Cancer, Conseil Régional d’Aquitaine, and Philips Healthcare.


  1. Bankson JA, Stafford RJ, Hazle JD (2005) Partially parallel imaging with phase-sensitive data: increased temporal resolution for magnetic resonance temperature imaging. Magn Reson Med 53(3):658–665PubMedCrossRefGoogle Scholar
  2. Barkhausen J, Quick HH, Lauenstein T, Goyen M, Ruehm SG, Laub G, Debatin JF, Ladd ME (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256Google Scholar
  3. Botros YY, Volakis JL, VanBaren P, Ebbini ES (1997) A hybrid computational model for ultrasound phased-array heating in presence of strongly scattering obstacles. IEEE Trans Biomed Eng 44:1039–1050PubMedCrossRefGoogle Scholar
  4. Botros YY, Ebbini ES, Volakis JL (1998) Two-step hybrid virtual array ray (VAR) technique for focusing through the rib cage. IEEE Trans Ultrason Ferroelectr Freq Control 45:989–1000PubMedCrossRefGoogle Scholar
  5. Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Joles FA (1996) Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam. Magn Reson Med 36:745–752PubMedCrossRefGoogle Scholar
  6. Civale J, Clarke R, Rivens I, ter Haar G (2006) The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound Med Biol 32:1753–1761PubMedCrossRefGoogle Scholar
  7. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16(6):956–965PubMedCrossRefGoogle Scholar
  8. Cochard E, Prada C, Aubry JF, Fink M (2009) Ultrasonic focusing through the ribs using the DORT method. Med Phys 36:3495–3503PubMedCrossRefGoogle Scholar
  9. Cornelis F, Grenier N, Moonen CTW, Quesson B (2010) In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound. NMR Biomed 5(1):31–38Google Scholar
  10. Damianou C, Hynynen K (1993) Focal spacing and near-field heating during pulsed high temperature ultrasound therapy. Ultrasound Med Biol 19(9):777–787PubMedCrossRefGoogle Scholar
  11. Delabrousse E, Salomir R, Birer A, Paquet C, Mithieux F, Chapelon JY, Cotton F, Lafon C (2010) Automatic temperature control for MR-guided interstitial ultrasound ablation in liver using a percutaneous applicator: ex vivo and in vivo initial studies. Magn Reson Med 63(3):667–79Google Scholar
  12. Denis de Senneville B, Desbarats P, Salomir R, Quesson B, Moonen CTW (2004a) Correction of accidental patient motion for on-line MR thermometry. Med Image Comput Comput Assist Interv 3217: 637–644Google Scholar
  13. Denis de Senneville B, Quesson B, Desbarats P, Salomir R, Palussière J, Moonen CTW (2004b) Atlas-based motion correction for on-line MR temperature mapping. IEEE Int Conf Image Process 3:2571–2574Google Scholar
  14. Denis de Senneville B, Mougenot C, Moonen CTW (2007a) Real time adaptive methods for treatment of mobile organs by MRI controlled high intensity focused ultrasound. Magn Reson Med 57(2):319–330CrossRefGoogle Scholar
  15. Denis de Senneville B, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CTW (2007b) MR-thermometry for monitoring tumor ablation. Eur Radiol 17(9):2401–2410CrossRefGoogle Scholar
  16. Denis de Senneville B, Roujol S, Moonen CTW, Ries M (2010) Motion correction in MR thermometry of abdominal organs: a comparison of the referenceless vs the multi-baseline approach. Magn Reson Med 64(5):1373–1381CrossRefGoogle Scholar
  17. Denis de Senneville B, Ries M, Maclair G, Moonen CTW (2011) MR-guided thermotherapy of abdominal organs using a robust PCA-based motion descriptor. Trans Med Imaging (in press)Google Scholar
  18. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle Magn. Reson Med 33(1):74–81CrossRefGoogle Scholar
  19. de Zwart JA, Vimeux FC, Delalande C, Canioni P, Moonen CTW (1999) Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation. Magn Reson Med 42(1):53–59PubMedCrossRefGoogle Scholar
  20. de Zwart JA, Vimeux F, Palussière J, Salomir R, Quesson B, Delalande C, Moonen CTW (2001) On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 45:128–137PubMedCrossRefGoogle Scholar
  21. El-Sharkawy AM, Schar M, Bottomley PA, Atalar E (2006) Monitoring and correcting spatiotemporal variations of the MR scanner’s static magnetic field. MAGMA 19(5):223–236PubMedCrossRefGoogle Scholar
  22. Enholm J, Köhler MO, Quesson B, Mougenot C, Moonen CTW, Sokka SD (2009) Improved volumetric MR-HIFU ablation by robust binary feedback control. IEEE Trans Biomed Eng 57(1):103–113PubMedCrossRefGoogle Scholar
  23. Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. In: Medical image computing and computer-assisted intervention–MICCAI 2007. Lecture notes in computer science, vol 4792. Springer, Berlin, pp 668–675Google Scholar
  24. Feinberg DA, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, Günther M (2010) Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med 63(2):290–296PubMedCrossRefGoogle Scholar
  25. Furusawa H, Namba K, Nakahara H, Tanaka C, Yasuda Y, Hirabara E, Imahariyama M, Komaki K (2007) The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer 14(1):55–58PubMedCrossRefGoogle Scholar
  26. Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y (1999) Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results. J Urol 161(1):156–162PubMedCrossRefGoogle Scholar
  27. Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell MV, Pauly KB (2010) Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs Med Phys 37(9):5014–5026Google Scholar
  28. Günther M, Feinberg DA (2004) Ultrasound-guided MRI: Preliminary results using a motion phantom. Magn Reson Med 52(1):27–32PubMedCrossRefGoogle Scholar
  29. Hacker A, Michel MS, Marlinghaus E, Kohrmann KU, Alken P (2006) Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int 97(4):779–785PubMedCrossRefGoogle Scholar
  30. Hey S, Maclair G, Denis de Senneville B, Lepetit-Coiffe M, Berber Y, Köhler MO, Quesson B, Moonen CTW, Ries M (2009) Online correction of respiratory-induced field disturbances for continuous MR-thermometry in the breast. Magn Reson Med 61(6):1494–1499PubMedCrossRefGoogle Scholar
  31. Holbrook AB, Santos JM, Kaye E, Rieke V, Butts Pauly K (2009) Real-time MR thermometry for monitoring HIFU ablations of the liver. Magn Reson Med 63(2):365–373CrossRefGoogle Scholar
  32. Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D (2006) Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-A primate study. Eur J Radiol 59(2):149–156PubMedCrossRefGoogle Scholar
  33. Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Phillips RR, Middleton MR (2005) The safety and feasibility of extracorporal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93(8):890–895PubMedCrossRefGoogle Scholar
  34. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823PubMedCrossRefGoogle Scholar
  35. Jolesz FA, Hynynen K (2002) Magnetic resonance image-guided focused ultrasound surgery. Cancer J 8(1):100–112Google Scholar
  36. Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, Cranston D (2004) High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 42(1–9):931–935PubMedCrossRefGoogle Scholar
  37. Khokhlova VA, Bobkova SM, Gavrilov LR (2010) Focus splitting associated with propagation of focused ultrasound through the rib cage. Acoust Phys 56(5):665–674PubMedCrossRefGoogle Scholar
  38. Köhler MO, Mougenot C, Quesson B, Enholm J, Le Bail B, Laurent C, Moonen CTW, Ehnholm GJ (2009) Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Med Phys 36(8):3521–3535PubMedCrossRefGoogle Scholar
  39. Köhler M, Denis de Senneville B, Quesson B, Moonen CTW, Ries M (2011) Spectrally selective pencil-beam navigator for motion compensation of MR-guided high-intensity focused ultrasound therapy of abdominal organs, Magn Reson Med 66(1):102--111Google Scholar
  40. Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. Int J Hyperthermia 21:547–560PubMedCrossRefGoogle Scholar
  41. Kuroda K, Suzuki Y, Ishihara Y, Okamoto K, Suzuki Y (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35:20–29PubMedCrossRefGoogle Scholar
  42. Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA (1997) Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med 38:845–851PubMedCrossRefGoogle Scholar
  43. Lepetit-Coiffé M, Laumonier H, Seror O, Quesson B, Sesay MB, Moonen CTW, Grenier N, Trillaud H (2010) Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 20(1):193–201Google Scholar
  44. Liu HL, Chang H, Chen WS, Shih TC, Hsiao JK, Lin WL (2007) Feasibility of transrib focused ultrasound thermal ablation for liver tumors using a spherically curved 2D array: a numerical study. Med Phys 34:3436–3448PubMedCrossRefGoogle Scholar
  45. Lourenço de Oliveira P, Denis de Senneville B, Dragonu I, Moonen CTW (2010) Rapid motion correction in MR guided high Intensity focused ultrasound heating using real-time ultrasound echo information. Nucl Magn Reson Biomed 23(9):1103–1108Google Scholar
  46. Maclair G, Denis de Senneville B, Ries M, Quesson B, Desbarats P, Benois-Pineau J, Moonen CTW (2007) PCA-based image registration: application to on-line MR temperature monitoring of moving tissues. IEEE Int Conf Image Process 3:141–144Google Scholar
  47. Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36PubMedCrossRefGoogle Scholar
  48. McDannold N (2005) Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperthermia 21(6):533–546PubMedCrossRefGoogle Scholar
  49. McDannold NJ, Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11(3):191–202PubMedCrossRefGoogle Scholar
  50. Mei CS, Panych LP, Yuan J, McDannold NJ, Treat LH, Jing Y, Madore B (2011) Combining two-dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magn Reson Med 66(1):112–122PubMedCrossRefGoogle Scholar
  51. Moonen CTW, Quesson B, Salomir R, Vimeux FC, de Zwart JA, van Vaals JJ, Grenier N, Palussière J (2001) Thermal therapies in interventional MR imaging. Focused ultrasound. Neuroimaging Clin N Am 11(4):737–747PubMedGoogle Scholar
  52. Morikawa S, Inubushi T, Kurumi Y, Naka S, Seshan V, Tsukamoto T (2002) Feasibility of simple respiratory triggering in MR-guided interventional procedures for liver tumors under general anesthesia. In: Proceedings of the10th annual meeting of the ISMRM, Honolulu, p 2240Google Scholar
  53. Mougenot C, Salomir R, Palussière J, Grenier N, Moonen CTW (2004) Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magn Reson Med 52:1005–1015PubMedCrossRefGoogle Scholar
  54. Mougenot C, Quesson B, Denis de Senneville B, Lourenço de Oliveira P, Sprinkhuizen S, Palussière J, Grenier N, Moonen CTW (2008) Three dimensional spatial and temporal temperature control with MR-thermometry guided focused ultrasound. Magn Reson Med 61(3):603–614CrossRefGoogle Scholar
  55. Mougenot C, Köhler MO, Enholm J, Quesson B, Moonen CTW (2011) Quantification of near-field heating during volumetric MR-HIFU ablation. Med Phys 38(1):272–282PubMedCrossRefGoogle Scholar
  56. Nehrke K, Börnert P, Groen J, Smink J, Böck JC (1999) On the performance and accuracy of 2D navigator pulses. Magn Reson Imaging 17(8):1173–1181PubMedCrossRefGoogle Scholar
  57. Okada A, Murakami T, Mikami K, Onishi H, Tanigawa N, Marukawa T, Nakamura H (2006) A case of hepatocellular carcinoma treated by MR-guided focused ultrasound ablation with respiratory gating. Magn Reson Med Sci 5(3):167–171PubMedCrossRefGoogle Scholar
  58. Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48(16):2577–2589PubMedCrossRefGoogle Scholar
  59. Pernot M, Tanter M, Fink M (2004) 3D real-time motion correction in high intensity focused ultrasound therapy. Ultrasound Med Biol 30:1239–1249PubMedCrossRefGoogle Scholar
  60. Peters RD, Henkelman RM (2000) Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue. Magn Reson Med 43:62–71PubMedCrossRefGoogle Scholar
  61. Peters RD, Hinks RS, Henkelman RM (1998) Ex vivo tissue-type independence in protonresonance frequency shift MR thermometry. Magn Reson Med 40(3):454–459PubMedCrossRefGoogle Scholar
  62. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRefGoogle Scholar
  63. Quesson B, de Zwart JA, Moonen CTW (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533PubMedCrossRefGoogle Scholar
  64. Quesson B, Merle M, Köhler M, Mougenot C, Roujol S, Denis de Senneville B, Moonen CTW (2010) A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver. Med Phys 37(6):2533–2540PubMedCrossRefGoogle Scholar
  65. Quesson B, Laurent C, Maclair G, Denis de Senneville B, Mougenot C, Ries M, Carteret T, Rullier A, Moonen CTW (2011) Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. Nucl Magn Reson Biomed 24(2):145–153Google Scholar
  66. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y (2006) Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59(5):949–955PubMedGoogle Scholar
  67. Ramrath L, Schlaefer A, Ernst F, Dieterich S, Schweikard A (2007) Prediction of respiratory motion with a multi-frequency based extended kalman filter. In: Proceedings of the 21st international conference and exhibition on computer assisted radiology and surgery (CARS’07), GermanyGoogle Scholar
  68. Rempp H, Clasen S, Pereira PL (2011) Image-based monitoring of magnetic resonance-guided thermoablative therapies for liver tumors. Cardiovasc Intervent Radiol (in press)Google Scholar
  69. Rieke V, Pauly KB (2008) MR thermometry. J Magn Reson Imaging 27(2):376–390PubMedCrossRefGoogle Scholar
  70. Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K (2004) Referenceless PRF shift thermometry. Magn Reson Med 51(6):1223–1231PubMedCrossRefGoogle Scholar
  71. Ries M, Denis de Senneville B, Roujol S, Berber Y, Quesson B, Moonen CTW (2010) Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues. Magn Reson Med 64(6):1704–1712PubMedCrossRefGoogle Scholar
  72. Ross JC, Tranquebar R, Shanbhag D (2008) Real-time liver motion compensation for MrgFUS. In: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention, vol 11(2), pp 806–813Google Scholar
  73. Roujol S, Denis de Senneville B, Vahalla E, Sangild Sørensen T, Moonen CTW, Ries M (2009) Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware. Magn Reson Med 62(6):1658–1664PubMedCrossRefGoogle Scholar
  74. Roujol S, Ries M, Quesson B, Moonen CTW, Ries M, Denis de Senneville B (2010) Real-time MR-Thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med 63(4):1080–1087PubMedCrossRefGoogle Scholar
  75. Roujol S, Ries M, Moonen CTW, Denis de Senneville B (2011) Automatic non-rigid calibration of image registration for real time interventional MRI of mobile organs. Trans Med Imaging (in press)Google Scholar
  76. Saborowski O, Saeed M (2007) An overview on the advances in cardiovascular interventional MR imaging. MAGMA 20(3):117–127PubMedCrossRefGoogle Scholar
  77. Salomir R, Denis de Senneville B, Moonen CTW (2003) A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson Part B Magn Reson Eng 19B(1):26–34Google Scholar
  78. Salomir R, Hokland S, Pedersen M (2005) Magnetic resonance imaging (MRI)-directed focussed ultrasound. Methods and applications in oncological treatment. Ugeskr Laeger 167(39):3667–3672PubMedGoogle Scholar
  79. Sapareto SA, Dewey WCL (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncolol Biol Phys 10:787–800PubMedCrossRefGoogle Scholar
  80. Seror O, Lepetit-Coiffé M, Le Bail B, Denis de Senneville B, Trillaud H, Moonen CTW, Quesson B (2007) Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol 18(2):408–416PubMedCrossRefGoogle Scholar
  81. Sprinkhuizen SM, Bakker CJ, Bartels LW (2010) Absolute MR thermometry using time-domain analysis of multi-gradient-echo magnitude images. Magn Reson Med 64(1):239–248PubMedCrossRefGoogle Scholar
  82. Stafford RJ, Hazle JD (2006) Magnetic resonance temperature imaging for focused ultrasound surgery: a review. Top Magn Reson Imaging 17(3):153–163PubMedCrossRefGoogle Scholar
  83. Stewart EA, Gedroyc WM, Tempany CM, Quade BJ, Inbar Y, Ehrenstein T, Shushan A, Hindley JT, Goldin RD, David M, Sklair M, Rabinovici J (2003) Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189(1):48–54PubMedCrossRefGoogle Scholar
  84. Stewart EA, Rabinovici J, Tempany CM, Inbar Y, Regan L, Gastout B, Hesley G, Kim HS, Hengst S, Gedroye WM (2006) Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril 85(1):22–29PubMedCrossRefGoogle Scholar
  85. Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M (2007) Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia 23:141–151PubMedCrossRefGoogle Scholar
  86. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226(3):897–905PubMedCrossRefGoogle Scholar
  87. Thomas JL, Wu F, Fink M (1996) Time reversal focusing applied to lithotripsy. Ultrason Imaging 18:106–121PubMedCrossRefGoogle Scholar
  88. Todd N, Adluru G, DiBella EVR, Parker D (2009) Temporally constrained reconstruction applied to MRI temperature data. Magn Reson Med 62(2):406–419PubMedCrossRefGoogle Scholar
  89. Vigen KK, Daniel BL, Pauly JM, Butts K (2003) Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med 50(5):1003–1010PubMedCrossRefGoogle Scholar
  90. Weidensteiner C, Kerioui N, Quesson B, Denis de Senneville B, Trillaud H, Moonen CTW (2004) Stability of real-time MR temperature mapping in healthy and diseased human liver. J Magn Reson Imaging 19(4):438–446PubMedCrossRefGoogle Scholar
  91. Yuldashev PV, Khokhlova VA (2011) Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays. Acoust Phys 57(3):334–343PubMedCrossRefGoogle Scholar
  92. Zhang L, Chen WZ, Liu YJ, Hu X, Zhou K, Chen L, Peng S, Zhu H, Zou HL, Bai J, Wang ZB (2010) Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus. Eur J Radiol 73(2):396–403PubMedCrossRefGoogle Scholar
  93. Zippel DB, Papa MZ (2005) The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer 12:32–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Baudouin Denis de Senneville
    • 1
  • Mario Ries
    • 1
  • Lambertus W. Bartels
    • 2
  • Chrit T. W. Moonen
    • 2
  1. 1.Laboratory for Molecular and Functional ImagingCNRS/University Segalen BordeauxBordeauxFrance
  2. 2.Department of RadiologyImage Sciences Institute, University Medical CenterUtrechtThe Netherlands

Personalised recommendations