MRI Guidance of Intracranial Tumor Resections

  • Daniela Kuhnt
  • Miriam H. A. Bauer
  • Oliver Ganslandt
  • Christopher NimskyEmail author
Part of the Medical Radiology book series (MEDRAD)


To achieve the primary goal of maximum extent of resection for intracranial lesions with preservation of neurological function, intraoperative MRI serves as immediate feedback on the surgical result and in this way is used for quality control. With the ability to compensate for the effects of brain shift, various studies have shown the contribution of intraoperative MRI to extended tumor resection. This is of special interest for neuroepithelial lesions, which are the most common primary brain tumors and furthermore are hard to distinguish from physiological brain parenchyma. Although for a long time the role of surgery in the treatment of these lesions was discussed, recent literature favors their maximum extent of resection. Navigation-guided surgery is routinely used in neurosurgical operating theaters, with the segmented outlines of the lesion of interest and the surrounding risk structures being displayed in the microscope’s heads-up display. Currently, not only anatomical image data can be integrated in the navigation system, so can information on functional brain structures. Magnetoencephalography and functional MRI display eloquent cortical areas, and fiber tractography based on diffusion tensor imaging displays the associated subcortical fiber bundles. The visualization of metabolically active brain areas is enabled by single photon emission computed tomography, positron emission tomography, or magnetic resonance spectroscopic imaging. With these additional data integrated in the navigation system, which is nowadays called “multimodality navigation” studies have shown a reduction of postoperative morbidity. In this chapter we do not aim to discuss the various forms of intraoperative MRI; however, we want to focus on the integration of multimodality navigation in the setting of intraoperative MRI scanning.


Fractional Anisotropy Diffusion Tensor Imaging Blood Oxygen Level Dependency Blood Oxygen Level Dependency Signal Magnetic Resonance Spectroscopic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arbel T, Morandi X, Comeau RM, Collins DL (2004) Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg 9(4):123–136PubMedGoogle Scholar
  2. Archip N, Clatz O, Whalen S et al (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35(2):609–624PubMedCrossRefGoogle Scholar
  3. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267PubMedCrossRefGoogle Scholar
  4. Black PM, Moriarty T, Alexander E III et al (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842 (discussion 842–845)PubMedCrossRefGoogle Scholar
  5. Bohinski RJ, Kokkino AK, Warnick RE et al (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48(4):731–742 (discussion 742–744)PubMedGoogle Scholar
  6. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2009) Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 45(2):286–297PubMedCrossRefGoogle Scholar
  7. Coenen VA, Krings T, Mayfrank L et al (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49(1):86–92 (discussion 92–93)PubMedGoogle Scholar
  8. Ganslandt O, Fahlbusch R, Nimsky C et al (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91(1):73–79PubMedCrossRefGoogle Scholar
  9. Gasser T, Sandalcioglu E, Schoch B et al (2005a) Functional magnetic resonance imaging in anesthetized patients: a relevant step toward real-time intraoperative functional neuroimaging. Neurosurgery 57(1):94–99 (discussion 94–99)PubMedCrossRefGoogle Scholar
  10. Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C (2005b) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3):685–693PubMedCrossRefGoogle Scholar
  11. Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl 85:137–142PubMedCrossRefGoogle Scholar
  12. Hastreiter F, Rezk-Salama C, Nimsky C (2000) Registration techniques for the analysis of the brain shift in neurosurgery. Comput Graph 24(3):385–389CrossRefGoogle Scholar
  13. Hatiboglu MA, Weinberg JS, Suki D et al (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64(6):1073–1081 (discussion 1081)PubMedCrossRefGoogle Scholar
  14. Keles GE, Chang EF, Lamborn KR et al (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg 105(1):34–40PubMedCrossRefGoogle Scholar
  15. Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbusch R, Ganslandt O (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228PubMedCrossRefGoogle Scholar
  16. Kowalczuk A, Macdonald RL, Amidei C et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41(5):1028–1036 (discussion 1036–1038)PubMedCrossRefGoogle Scholar
  17. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011a) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol. [Epub ahead of print]Google Scholar
  18. Kuhnt D, Ganslandt O, Schlaffer SM, Buchfelder M, Nimsky C (2011b) Quantification of glioma removal by intraoperative high-field magnetic resonance imaging—an update. Neurosurgery 69(4):852--863CrossRefGoogle Scholar
  19. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198PubMedCrossRefGoogle Scholar
  20. Mamata Y, Mamata H, Nabavi A et al (2001) Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J Magn Reson Imaging 13(1):115–119PubMedCrossRefGoogle Scholar
  21. Martin AJ, Liu H, Hall WA, Truwit CL (2001) Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol 22(5):959–968PubMedGoogle Scholar
  22. McGirt MJ, Chaichana KL, Attenello FJ et al (2008) Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 63(4):700–707 (author reply 707–708)PubMedCrossRefGoogle Scholar
  23. Merhof D, Richter M, Enders F et al (2006) Fast and accurate connectivity analysis between functional regions based on DT-MRI. Med Image Comput Comput Assist Interv 9(Pt 2):225–233PubMedGoogle Scholar
  24. Nabavi A, Black PM, Gering DT et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797 (discussion 797–798)PubMedGoogle Scholar
  25. Nimsky C, Ganslandt O, Von Keller B, Romstock J, Fahlbusch R (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1):67–78PubMedCrossRefGoogle Scholar
  26. Nimsky C, Ganslandt O, Hastreiter P et al (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56(1):130–137 (discussion 138)PubMedGoogle Scholar
  27. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30(4):1219–1229PubMedCrossRefGoogle Scholar
  28. Rachinger J, von Keller B, Ganslandt O, Fahlbusch R, Nimsky C (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg 84(2–3):109–117PubMedCrossRefGoogle Scholar
  29. Roberts DW, Miga MI, Hartov A et al (1999) Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45(5):1199–1206 (discussion 1206–1207)PubMedCrossRefGoogle Scholar
  30. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764 (discussion 264–756)PubMedCrossRefGoogle Scholar
  31. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8PubMedCrossRefGoogle Scholar
  32. Schneider JP, Trantakis C, Rubach M et al (2005) Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis. Neuroradiology 47(7):489–500PubMedCrossRefGoogle Scholar
  33. Stadlbauer A, Nimsky C, Buslei R et al (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34(3):949–956PubMedCrossRefGoogle Scholar
  34. Steinmeier R, Fahlbusch R, Ganslandt O et al (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43(4):739–747 (discussion 747–748)PubMedCrossRefGoogle Scholar
  35. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401PubMedCrossRefGoogle Scholar
  36. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U (2006) A novel platform for image-guided ultrasound. Neurosurgery 58(4):710–718 (discussion 710–718)PubMedCrossRefGoogle Scholar
  37. Wirtz CR, Knauth M, Staubert A et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46(5):1112–1120 (discussion 1120–1122)PubMedCrossRefGoogle Scholar
  38. Wolf M, Vogel T, Weierich P (2001) Automatic transfer of preoperative fMRI markers into intraoperative MR-images for updating neuronavigation. IEICE Trans Inf Syst E84-D:1698–1704Google Scholar
  39. Wu JS, Zhou LF, Chen W et al (2005) Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas. Zhonghua Wai Ke Za Zhi 43(17):1141–1145PubMedGoogle Scholar
  40. Wu JS, Zhou LF, Tang WJ et al (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61(5):935–948 (discussion 948–949)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Daniela Kuhnt
    • 1
  • Miriam H. A. Bauer
    • 1
  • Oliver Ganslandt
    • 2
  • Christopher Nimsky
    • 1
    Email author
  1. 1.Department of NeurosurgeryUniversity of MarburgMarburgGermany
  2. 2.Department of NeurosurgeryUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations